def print_unusual_amino_acid(self): '''Check if ico file exist''' if self.check_if_ico_exist() == False: return f'"logo.ico" file doesnt exist. File has to be added to the directory;{self.ico_path()}' '''check if unusual_amino.csv" exist''' if self.check_if_data_exist() == False: return f'"unusual_amino.csv" doesnt exist. Amino acid has to be added first;{self.data_path()}' '''check if unusual_amino.csv is empty - first checked if exist''' if self.check_if_unusual_amino_is_empty() == 'True': return f'Please note that file "unusual_amino.csv" is empty; Or it contains only one row' else: '''Sets icon''' root = tk.Tk() root.title('PeptideMassCalculator') root.iconbitmap(self.ico_path()) frame = tk.Frame(root) frame.pack(fill='both', expand=True) datatable = Table(frame, showtoolbar=False, showstatusbar=True) datatable.show() '''shows unusual_amino.csv in the table''' datatable.importCSV(filename=self.data_path(), dialog=False) root.mainloop()
def retrievePassword(root, userSecret): root.destroy() hoje = Tk() hoje.geometry("480x300") hoje.title('SmartLocker') FILENAME = Image.open('photo.png') tk_img = ImageTk.PhotoImage(FILENAME) frame1 = tk.Frame(hoje, bg='black') frame1.place(relwidth=1.0, relheight=1.0) frame1.place(relwidth=1.0, relheight=1.0) labetse2 = Label(frame1, image=tk_img) labetse2.pack() labetset = Label(frame1, image=tk_img) #labetset.grid(row=0, column=0) labetset.pack() labetset.place(relwidth=1.0, relheight=0.6) frameText = Label(labetset, text="Take a look on what info we have!", bg='black', fg='white', font=('Courier', 17)) #frameText.grid(row=2, columnspan=3) frameText.place(x=15, y=280) #userSecret.showServices() toolbar = tk.Frame(labetset) pt = Table(labetset, width=480, height=150) button = tk.Button(frame1, text="Quit", font='Courier', fg='red', background='blue', highlightbackground='green', command=quit) button.place(x=220, y=250) buttonSwitch = tk.Button(frame1, text="Add New Account", font='Courier', fg='red', background='blue', highlightbackground='green', command=lambda: frameAddPassword(hoje)) buttonSwitch.place(x=280, y=250) pt.importCSV(filename='password.csv') pt.show() pt.setColumnColors(cols=2, clr='red') #button.place(x=100, y =100) hoje.mainloop()
def getCSV(self): root = tk.Tk() root.title('PandasTable') frame = tk.Frame(root) frame.pack(fill='both', expand=True) pt = Table(frame) pt.show() import_file_path = filedialog.askopenfilename() pt.importCSV(filename=import_file_path, dialog=True) root.mainloop()
def load_dataset(): dataset_window = Tk() dataset_window.geometry('1000x800') dataset_window.title('Dataset') f = Frame(dataset_window) tb = Table(f) f.pack(fill=BOTH, expand=True) tb.importCSV('train.csv') tb.show() dataset_window.mainloop()
def Employee(): filename = "EmployeeDetails\EmployeeDetails.csv" root3 = Tk() root3.title("Employee Table") frame = Frame(root3) frame.pack() pt = Table(frame) pt.importCSV(filename) pt.show() root3.mainloop()
def open_file(): file = filedialog.askopenfilename( initialdir="/home/pi/Desktop/AutomatedCableTester", title="Select file", filetypes=(("csv files", "*.csv"), ("all files", "*.*"))) if len(file) != 0 and ".csv" in file: t = tk.Toplevel() pt = Table(t) pt.importCSV(file) pt.redraw() pt.show()
def attendance(): ts = time.time() date = datetime.datetime.fromtimestamp(ts).strftime('%Y-%m-%d') filename = "Attendance\Attendance_" + date + ".csv" root2 = Tk() root2.title("Attendance Table") frame = Frame(root2) frame.pack() pt = Table(frame) pt.importCSV(filename) pt.show() root2.mainloop()
def loaddataset(): #root.destroy() root1 = Tk() root1.geometry('1600x8000') root1.title('Dataset') f = Frame(root1) tb = Table(f) f.pack(fill=BOTH, expand=True) tb.importCSV('data.csv') tb.show() root1.mainloop()
def show_data_table(): path = open_path() if path == 'FileNotFoundError': error_box('Please upload data first.') return root = tk.Tk() root.title('STOCK ANALYST') frame = tk.Frame(root) frame.pack(fill='both', expand=True) datatable = Table(frame, showtoolbar=True, showstatusbar=True) datatable.show() '''shows data in the table''' datatable.importCSV(filename=path, dialog=False) root.mainloop()
class DataPanel(): def __init__(self, root): self.frame3 = Tk.Frame(root) self.frame3.__init__() self.frame3.pack(fill=Tk.BOTH, expand=1) df = pandas.DataFrame() self.table = Table(self.frame3, dataframe=df, showtoolbar=True, showstatusbar=True) self.table.show() def update(self, file_path): self.table.importCSV(file_path) self.table.redraw()
def show_table(): try: try: if root.state() == 'normal': root.focus() except Exception as e: root = tk.Toplevel() root.title("Show Table") root.geometry('800x500') root.configure(bg='#FFFFCC') frame = tk.Frame(root) frame.pack(fill=BOTH) table = Table(frame,showstatusbar=True,showtoolbar=True) table.importCSV(filename=r'G:\PYTHON\GUI\Passbuddy project\webinfo.csv') table.show() except Exception as e: permanent_row = ['Platformname','Username','Password','Email'] f = open(r'G:\PYTHON\GUI\Passbuddy project\webinfo.csv','a') write = csv.writer(f) write.writerow(permanent_row) f.close()
Created on Sat Feb 22 19:33:18 2020 @author: Zhimin """ from tkinter import * from pandastable import Table, TableModel #assuming parent is the frame in which you want to place the table root = Tk() frame = Frame(root) frame.pack() #root.mainloop() pt = Table(frame) pt.show() pt.importCSV('test.csv') pt.mainloop() class popupWindow(object): def changeBlock( self,event ): self.location = (event.x,event.y) print(str(event.x) + str(event.y)) self.canvas.create_rectangle(event.x,event.y,event.x+10,event.y+10,fill='red') def __init__(self, master): top=self.top=Toplevel(master) top.minsize(width=800, height=600) self.canvas = Canvas(top, width=120, height=80, bg='black') self.canvas.pack(expand=YES, fill=BOTH) self.gif1 = PhotoImage(file='BP Baltimore Satellite.PNG')
from tkinter import * from pandastable import Table #assuming parent is the frame in which you want to place the table pt = Table(parent) pt.importCSV('example.csv') pt.show()
def merge_data(): mergeWindow = Toplevel() mergeWindow.title("Merged Data Window") reader = csv.reader(open(dataFile[0])) reader1 = csv.reader(open(dataFile[1])) f = open("combined.csv", "w") writer = csv.writer(f) next(reader1) for row in reader: writer.writerow(row) for row in reader1: writer.writerow(row) f.close() frame = Frame(mergeWindow) frame.pack() pt = Table(frame) pt.show() pt.importCSV(filename='combined.csv', dialog=True) label = Label(mergeWindow, text="This is merged file", font=50) label.pack() dataPreprocessingLabel = Label( mergeWindow, text="Do you want data preprocessing on data?", font=100) dataPreprocessingLabel.pack() def yes_clicked(): #Here we have to do data preprocessing dataPreprocessingWindow = Toplevel() dataPreprocessingWindow.title("Data Preprocessing Window") dataPreprocessingWindow.geometry("700x700") missing_values_indexes = StringVar() icategorical_values_indexes = StringVar() dcategorical_values_indexes = StringVar() def ok_clicked(): try: listOfMissingValuesIndexes = [] listOfICategoricalValuesIndexes = [] listOfDCategoricalValuesIndexes = [] index = missing_values_indexes.get() iindex = icategorical_values_indexes.get() dindex = dcategorical_values_indexes.get() for i in index: if (i == ' '): pass else: ind = int(i) listOfMissingValuesIndexes.append(ind) for i in iindex: if (i == ' '): pass else: ind = int(i) listOfICategoricalValuesIndexes.append(ind) for i in dindex: if (i == ' '): pass else: ind = int(i) listOfDCategoricalValuesIndexes.append(ind) print(listOfMissingValuesIndexes) print(listOfICategoricalValuesIndexes) print(listOfDCategoricalValuesIndexes) except: print( "Your data doesn't have any categorical value") finally: import numpy as np import matplotlib.pyplot as plt import pandas as pd dataset = pd.read_csv('combined.csv') X = dataset.iloc[:, :-1].values y = dataset.iloc[:, -1].values print(X) print(y) try: from sklearn.impute import SimpleImputer imputer = SimpleImputer(missing_values=np.nan, strategy='mean') imputer.fit(X[:, listOfMissingValuesIndexes]) X[:, listOfMissingValuesIndexes] = imputer.transform( X[:, listOfMissingValuesIndexes]) print(X) from sklearn.compose import ColumnTransformer from sklearn.preprocessing import OneHotEncoder ct = ColumnTransformer(transformers=[ ('encoder', OneHotEncoder(), listOfICategoricalValuesIndexes) ], remainder='passthrough') X = np.array(ct.fit_transform(X)) print(X) from sklearn.preprocessing import LabelEncoder le = LabelEncoder() y = le.fit_transform(y) print(y) except: print("No need") finally: from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, random_state=1) Label( dataPreprocessingWindow, text= "This is metrices of features X after data preprocessing", bg="orange", font=50).grid() Label(dataPreprocessingWindow, text=X, font=50).grid() Label( dataPreprocessingWindow, text= "This is dependent variable y after data preprocessing", bg="orange", font=50).grid() Label(dataPreprocessingWindow, text=y, font=50).grid() Label( dataPreprocessingWindow, text= "Data set splitted into training set(80%) and test set(20%)", bg="orange", font=70).grid() def move_forward_clicked(): chooseAlgoWindow = Toplevel() chooseAlgoWindow.title("Choice is hard") chooseAlgoWindow.geometry("700x700") Label( chooseAlgoWindow, text= "Choose what you want to do on your data(REGRESSION, CLASSIFICATION OR CLUSTERING)", bg="antique white", font=80).grid(row=0, column=0) def regression(): def linear_regression(): from sklearn.linear_model import LinearRegression regressor = LinearRegression() regressor.fit(X_train, y_train) #Predicting the test set results y_pred = regressor.predict(X_test) #Visualizing the training set results def train_set(): plt.scatter(X_train[:, 0], y_train, color='red') plt.plot(X_train, regressor.predict(X_train), color='blue') plt.title('Training set') plt.show() #Visualizing the test set results def test_set(): plt.scatter(X_test[:, 0], y_test, color='red') plt.plot(X_train, regressor.predict(X_train), color='blue') plt.title("Test set") plt.show() #Predicting new value def predict_new_value(): new_value_predict = IntVar() Label( chooseAlgoWindow, text="Enter the value to predict", font=70).grid() Entry(chooseAlgoWindow, textvariable=new_value_predict, width=50).grid() def predict_clicked(): value_to_predict = new_value_predict.get( ) X_predict = [value_to_predict] y_predict = regressor.predict( [X_predict]) Label(chooseAlgoWindow, text="Predicted value is :-", font=100).grid() Label(chooseAlgoWindow, text=y_predict, font=150).grid() Button(chooseAlgoWindow, text="Predict", fg="orange", command=predict_clicked, cursor="hand2").grid() Button( chooseAlgoWindow, text= "Click to visualize the train test result", bg="orange", fg="black", command=train_set, cursor="hand2").grid() Button( chooseAlgoWindow, text= "Click to visualize the test test result", bg="orange", fg="black", command=test_set, cursor="hand2").grid() Button( chooseAlgoWindow, text="Click here to predict new value", bg="orange", fg="black", command=predict_new_value, cursor="hand2").grid() def multiple_linear_regression(): from sklearn.linear_model import LinearRegression regressor = LinearRegression() regressor.fit(X_train, y_train) #Predicting the Test set results y_pred = regressor.predict(X_test) np.set_printoptions(precision=2) print( np.concatenate( (y_pred.reshape(len(y_pred), 1), y_test.reshape(len(y_test), 1)), 1)) Label( chooseAlgoWindow, text= "Here is the predicted test set result(FIRST COLUMN = TEST SET VALUE, SECOND COLUMN = PREDICTED VALUE)", bg="orange").grid() Label(chooseAlgoWindow, text=np.concatenate( (y_pred.reshape(len(y_pred), 1), y_test.reshape(len(y_test), 1)), 1)).grid() Label(chooseAlgoWindow, text="Ok...Which algo??", bg="orange", font=40).grid(row=4, column=1) Button(chooseAlgoWindow, text="1.Simple Linear Regression", bg="linen", fg="black", command=linear_regression, cursor="hand2").grid(row=5, column=1) Button(chooseAlgoWindow, text="2.Multiple Linear Regression", bg="linen", fg="black", command=multiple_linear_regression, cursor="hand2").grid(row=6, column=1) Button(chooseAlgoWindow, text="3.Polynomial Regression", bg="linen", fg="black", cursor="hand2").grid(row=7, column=1) Button(chooseAlgoWindow, text="4.Support Vector Regression", bg="linen", fg="black", cursor="hand2").grid(row=8, column=1) Button(chooseAlgoWindow, text="5.Decision Tree Regression", bg="linen", fg="black", cursor="hand2").grid(row=9, column=1) Button(chooseAlgoWindow, text="6.Random Forest Regression", bg="linen", fg="black", cursor="hand2").grid(row=10, column=1) def classification(): Label(chooseAlgoWindow, text="Ok...Which algo??", bg="orange", font=40).grid(row=4, column=2) Button(chooseAlgoWindow, text="1.Logistic Regression", bg="linen", fg="black", cursor="hand2").grid(row=5, column=2) Button(chooseAlgoWindow, text="2.K-Nearest Neighbours", bg="linen", fg="black", cursor="hand2").grid(row=6, column=2) Button(chooseAlgoWindow, text="3.Support Vector Machine", bg="linen", fg="black", cursor="hand2").grid(row=7, column=2) Button(chooseAlgoWindow, text="4.Kernel SVM", bg="linen", fg="black", cursor="hand2").grid(row=8, column=2) Button(chooseAlgoWindow, text="5.Naive Byes", bg="linen", fg="black", cursor="hand2").grid(row=9, column=2) Button(chooseAlgoWindow, text="6.Decision Tree Classification", bg="linen", fg="black", cursor="hand2").grid(row=10, column=2) Button(chooseAlgoWindow, text="7.Random Forest Classification", bg="linen", fg="black", cursor="hand2").grid(row=11, column=2) def clustering(): Label(chooseAlgoWindow, text="Ok...Which algo??", bg="orange", font=40).grid(row=4, column=3) Button(chooseAlgoWindow, text="1.K-Means Clustering", bg="linen", fg="black", cursor="hand2").grid(row=5, column=3) Button(chooseAlgoWindow, text="2.Heirarchical Clustering", bg="linen", fg="black", cursor="hand2").grid(row=6, column=3) Button(chooseAlgoWindow, text="REGRESSION", bg="linen", fg="black", height=2, width=30, command=regression, cursor="hand2").grid(row=3, column=1) Button(chooseAlgoWindow, text="CLASSIFICATION", bg="linen", fg="black", height=2, width=30, command=classification, cursor="hand2").grid(row=3, column=2) Button(chooseAlgoWindow, text="CLUSTERING", bg="linen", fg="black", height=2, width=30, command=clustering, cursor="hand2").grid(row=3, column=3) Button(dataPreprocessingWindow, text="Move Forward", bg="orange", fg="linen", command=move_forward_clicked, cursor="hand2").grid() Label( dataPreprocessingWindow, text= "Enter indexes(space separated) that can contain missing data", font=70).grid(row=0, column=0) Entry(dataPreprocessingWindow, textvariable=missing_values_indexes, width=50).grid() Label( dataPreprocessingWindow, text= "Enter indexes(space separated) of independent variables that can contain categorical data", font=70).grid() Entry(dataPreprocessingWindow, textvariable=icategorical_values_indexes, width=50).grid() Button(dataPreprocessingWindow, text="OK", command=ok_clicked, cursor="hand2").grid() def no_clicked(): messagebox.showinfo( "Recommendation", "We recommend you to do data preprocessing before moving forward!" ) yesButton = Button(mergeWindow, text="Yes(RECOMMENDED)", height=2, width=20, bg="linen", command=yes_clicked, cursor="hand2") yesButton.pack() noButton = Button(mergeWindow, text="No", height=2, width=20, command=no_clicked, bg="linen", cursor="hand2") noButton.pack() Label( mergeWindow, text= "Make sure before clicking on YES that the dependent variable is the last column in data", font=100).pack() Label( mergeWindow, text= "Or if you want clustering on data then click the below button", font=100, bg="orange", fg="black").pack() def clusteringClicked(): Label( mergeWindow, text= "Which algo?? Choose the right algo according to the data", bg="green yellow").pack() Button(mergeWindow, text="K-Means Algorithm", bg="linen", fg="black", cursor="hand2").pack() heirarchicalButton = Button(mergeWindow, text="Heirarchical Clustering", bg="linen", fg="black", cursor="hand2").pack() clusteringButton = Button(mergeWindow, text="Click Here For Clustering", height=2, width=20, command=clusteringClicked, cursor="hand2") clusteringButton.pack()