Exemple #1
0
def multi_proj_feature_classification(
        parameter_file,
        file_keyword,
        function_keyword="multi_proj_feature_classification"):
    data_keyword, data_folder, attr_num, attr_len, num_classes, start_class, class_column, class_id, obj_folder, top_k, method, log_folder, cnn_obj_folder, cnn_temp_folder, cnn_setting_file = read_feature_classification(
        parameter_file, function_keyword)
    log_folder = init_folder(log_folder)
    if method == 'cnn':
        return projected_cnn_classification_main(parameter_file, file_keyword)

    else:
        # Need to check the rest
        return False

    print data_keyword, data_folder, attr_num, attr_len, num_classes, start_class, class_column, class_id, obj_folder, top_k, method, log_folder, cnn_obj_folder, cnn_temp_folder, cnn_setting_file
    data_stru = return_data_stru(num_classes, start_class, attr_num, attr_len,
                                 class_column)
    print obj_folder
    file_list = list_files(data_folder)
    obj_list = list_files(obj_folder)

    class_column = 0
    header = True

    save_obj_folder = obj_folder[:-1] + "_" + method + "_out"
    save_obj_folder = init_folder(save_obj_folder)

    delimiter = ' '
    loop_count = -1
    for train_file in file_list:
        if file_keyword not in train_file:
            continue
        loop_count = loop_count + 1
        file_key = train_file.replace('.txt', '')
        log_file = log_folder + data_keyword + '_' + file_key + '_' + function_keyword + '_class' + str(
            class_id) + '_top' + str(top_k) + '_' + method + '.log'

        print "log file: " + log_file
        logger = setup_logger(log_file, 'logger_' + str(loop_count))
        logger.info('\nlog file: ' + log_file)
        logger.info(train_file)
        logger.info('method: ' + method)
        logger.info('============')

        found_obj_file = ''
        for obj_file in obj_list:
            if file_key in obj_file:
                found_obj_file = obj_file
                break
        if found_obj_file == '':
            raise Exception('No obj file found')

        print found_obj_file
        found_obj_file = obj_folder + found_obj_file

        feature_array = load_obj(found_obj_file)[0]
        feature_array = np.array(feature_array)
        logger.info("feature array shape: " + str(feature_array.shape))

        test_file = train_file.replace('train', 'test')

        train_x_matrix, train_y_vector, test_x_matrix, test_y_vector, attr_num = train_test_file_reading_with_attrnum(
            data_folder + train_file, data_folder + test_file, class_column,
            delimiter, header)

        if loop_count == 0:
            logger.info('train matrix shape: ' + str(train_x_matrix.shape))
            logger.info('train label shape: ' + str(train_y_vector.shape))
            logger.info('test matrix shape: ' + str(test_x_matrix.shape))
            logger.info('test label shape: ' + str(test_y_vector.shape))

        train_x_matrix = train_test_transpose(train_x_matrix, attr_num,
                                              attr_len, False)
        test_x_matrix = train_test_transpose(test_x_matrix, attr_num, attr_len,
                                             False)

        data_stru.attr_num = top_k
        fold_accuracy, fold_f1_value, fold_predict_y, fold_train_time, fold_test_time, fold_predict_matrix = run_feature_projected_classification(
            train_x_matrix, train_y_vector, test_x_matrix, test_y_vector,
            feature_array, top_k, method, class_id, logger)

        logger.info("Fold F1: " + str(fold_f1_value))
        logger.info(method + ' fold training time (sec):' +
                    str(fold_train_time))
        logger.info(method + ' fold testing time (sec):' + str(fold_test_time))
        logger.info(method + ' fold accuracy: ' + str(fold_accuracy))
        logger.info("save obj to " + save_obj_folder + file_key + "_" +
                    method + "_project_" + method + "_result.ckpt")
        save_obj([
            fold_accuracy, fold_f1_value, fold_predict_y, fold_train_time,
            fold_test_time, fold_predict_matrix
        ], save_obj_folder + file_key + "_" + method + "_project_" + method +
                 "_result.ckpt")
Exemple #2
0
def backward_multitime_main(parameter_file="../../parameters/",
                            file_keyword="train_",
                            n_selected_features=15):
    function_keyword = "backward_wrapper"
    #data_keyword, data_folder, attr_num, attr_len, num_classes, start_class, class_column, class_id, obj_folder, method, log_folder, out_obj_folder, out_model_folder, cnn_setting_file = read_feature_classification(parameter_file, function_keyword)
    data_keyword, data_folder, attr_num, attr_len, num_classes, start_class, class_column, class_id, obj_folder, top_k, method, log_folder, out_obj_folder, out_model_folder, cnn_setting_file = read_feature_classification(
        parameter_file, function_keyword)
    print data_keyword, data_folder, attr_num, attr_len, num_classes, start_class, class_column, class_id, obj_folder, method, log_folder, out_obj_folder, out_model_folder, cnn_setting_file

    log_folder = init_folder(log_folder)
    out_obj_folder = init_folder(out_obj_folder)
    out_model_folder = init_folder(out_model_folder)

    data_stru = return_data_stru(num_classes, start_class, attr_num, attr_len,
                                 class_column)

    file_list = list_files(data_folder)

    file_count = 0

    class_column = 0
    header = True

    delimiter = ' '
    loop_count = -1
    for train_file in file_list:
        if file_keyword not in train_file:
            continue
        loop_count = loop_count + 1
        file_key = train_file.replace('.txt', '')
        log_file = log_folder + data_keyword + '_' + file_key + '_' + function_keyword + '_class' + str(
            class_id) + '_' + method + '.log'

        print "log file: " + log_file

        logger = setup_logger(log_file, 'logger_' + str(loop_count))
        logger.info('\nlog file: ' + log_file)
        logger.info(train_file)
        logger.info('method: ' + method)
        logger.info('============')

        test_file = train_file.replace('train', 'test')

        train_x_matrix, train_y_vector, test_x_matrix, test_y_vector = train_test_file_reading(
            data_folder + train_file, data_folder + test_file, class_column,
            delimiter, header)
        n_samples, n_col = train_x_matrix.shape
        train_x_matrix = train_x_matrix.reshape(n_samples, attr_num, attr_len)
        n_samples, n_col = test_x_matrix.shape
        test_x_matrix = test_x_matrix.reshape(n_samples, attr_num, attr_len)
        if file_count == 0:
            logger.info('train matrix shape: ' + str(train_x_matrix.shape))
            logger.info('train label shape: ' + str(train_y_vector.shape))
            logger.info('test matrix shape: ' + str(test_x_matrix.shape))
            logger.info('test label shape: ' + str(test_y_vector.shape))

        if class_id == -1:
            min_class = min(train_y_vector)
            max_class = max(train_y_vector) + 1
        else:
            min_class = class_id
            max_class = class_id + 1
        for c in range(min_class, max_class):
            logger.info("Class: " + str(c))
            temp_train_y_vector = np.where(train_y_vector == c, 1, 0)
            temp_test_y_vector = np.where(test_y_vector == c, 1, 0)
            top_features = backward_multitime(
                train_x_matrix, temp_train_y_vector, test_x_matrix,
                temp_test_y_vector, n_selected_features, data_keyword, method,
                cnn_setting_file, logger)
            logger.info("Top Features For Class " + str(c) + ": " +
                        str(top_features))
            logger.info("End Of Class: " + str(c))
Exemple #3
0
def forward_multitime_main(parameter_file="../../parameters/",
                           file_keyword="train_"):
    function_keyword = "forward_wrapper"
    #data_keyword, data_folder, attr_num, attr_len, num_classes, start_class, class_column, class_id, obj_folder, top_k, method, log_folder, out_obj_folder, out_model_folder, cnn_setting_file = read_feature_classification(parameter_file, function_keyword)
    data_keyword, data_folder, attr_num, attr_len, num_classes, start_class, class_column, class_id, obj_folder, top_k, method, log_folder, out_obj_folder, out_model_folder, cnn_setting_file = read_feature_classification(
        parameter_file, function_keyword)
    print data_keyword, data_folder, attr_num, attr_len, num_classes, start_class, class_column, class_id, obj_folder, top_k, method, log_folder, out_obj_folder, out_model_folder, cnn_setting_file

    if data_keyword == "dsa" or data_keyword == "toy":
        n_selected_features = 15
        num_classes = 19
    elif data_keyword == "rar":
        n_selected_features = 30
        num_classes = 33
    elif data_keyword == "arc" or data_keyword == "fixed_arc":
        n_selected_features = 30
        num_classes = 18
    elif data_keyword == "asl":
        n_selected_features = 6
        num_classes = 95
    else:
        raise Exception("Please fullfill the data basic information first!")

    log_folder = init_folder(log_folder)
    #out_obj_folder = init_folder(out_obj_folder)
    #out_model_folder = init_folder(out_model_folder)

    data_stru = return_data_stru(num_classes, start_class, attr_num, attr_len,
                                 class_column)

    file_list = list_files(data_folder)

    file_count = 0

    class_column = 0
    header = True

    delimiter = ' '
    loop_count = -1

    ##########
    ###already remove later
    #already_obj_folder = "../../object/" + data_keyword + "/forward_wrapper/"
    #already_obj_list = list_files(already_obj_folder)
    ###end of already remove later
    for train_file in file_list:
        if file_keyword not in train_file:
            continue
        loop_count = loop_count + 1
        file_key = train_file.replace('.txt', '')
        #already_obj_file = ""
        already = False
        #for already_obj_file in already_obj_list:
        #    if file_key in already_obj_file and method in already_obj_file:
        #        already = True
        #        break

        ##########
        ###already part
        #if already is True:
        #    already_class_feature = load_obj(already_obj_folder + already_obj_file)[0]
        #else:
        #    log_file = log_folder + data_keyword + '_' + file_key + '_' + function_keyword + '_class' + str(class_id) + '_' + method + '.log'
        #    already_class_feature = None
        ###end of already part

        log_file = log_folder + data_keyword + '_' + file_key + '_' + function_keyword + '_class' + str(
            class_id) + '_' + method + "_top" + str(
                n_selected_features) + '_already' + str(already) + '.log'
        print "log file: " + log_file

        logger = setup_logger(log_file, 'logger_' + str(loop_count))
        logger.info('\nlog file: ' + log_file)
        logger.info(train_file)
        logger.info('method: ' + method)
        logger.info('============')

        test_file = train_file.replace('train', 'test')

        train_x_matrix, train_y_vector, test_x_matrix, test_y_vector = train_test_file_reading(
            data_folder + train_file, data_folder + test_file, class_column,
            delimiter, header)
        n_samples, n_col = train_x_matrix.shape
        train_x_matrix = train_x_matrix.reshape(n_samples, attr_num, attr_len)
        n_samples, n_col = test_x_matrix.shape
        test_x_matrix = test_x_matrix.reshape(n_samples, attr_num, attr_len)
        if file_count == 0:
            logger.info('train matrix shape: ' + str(train_x_matrix.shape))
            logger.info('train label shape: ' + str(train_y_vector.shape))
            logger.info('test matrix shape: ' + str(test_x_matrix.shape))
            logger.info('test label shape: ' + str(test_y_vector.shape))

        min_class = min(train_y_vector)
        max_class = max(train_y_vector) + 1
        for c in range(min_class, max_class):
            logger.info("Class: " + str(c))
            already_feature = []
            #if already_class_feature is not None:
            #    class_already = already_class_feature[c, :]
            #    for already_f in class_already:
            #        already_feature.append(already_f)
            #    logger.info("already features: " +file_key + " with class " + str(c) + ": " + str(already_feature))
            temp_train_y_vector = np.where(train_y_vector == c, 1, 0)
            temp_test_y_vector = np.where(test_y_vector == c, 1, 0)
            #print already_feature
            top_features = forward_multitime(
                train_x_matrix, temp_train_y_vector, test_x_matrix,
                temp_test_y_vector, n_selected_features, data_keyword,
                file_key, method, cnn_setting_file, logger, already_feature)
            logger.info("Top Features For Class " + str(c) + ": " +
                        str(top_features))
            logger.info("End Of Class: " + str(c))
Exemple #4
0
def best_forward_multitime_main(parameter_file="../../parameters/", file_keyword="train_", function_keyword="best_forward_multitime"):
    #data_keyword, data_folder, attr_num, attr_len, num_classes, start_class, class_column, class_id, obj_folder, method, log_folder, out_obj_folder, out_model_folder, cnn_setting_file = read_all_feature_classification(parameter_file, function_keyword)
    data_keyword, data_folder, attr_num, attr_len, num_classes, start_class, class_column, class_id, obj_folder, top_k, method, log_folder, out_obj_folder, out_model_folder, cnn_setting_file = read_feature_classification(parameter_file, function_keyword)

    print data_keyword, data_folder, attr_num, attr_len, num_classes, start_class, class_column, class_id, obj_folder, method, log_folder, out_obj_folder, out_model_folder, cnn_setting_file
    function_keyword = function_keyword + "_" + method
    if data_keyword == "dsa" or data_keyword == "toy":
        n_selected_features = 15
        num_classes = 19
    elif data_keyword == "rar":
        n_selected_features = 30
        num_classes = 33
    elif data_keyword == "arc" or data_keyword == "fixed_arc":
        n_selected_features = 30
        num_classes = 18
    elif data_keyword == "asl":
        n_selected_features = 6
        num_classes = 95
    else:
        raise Exception("Please fullfill the data basic information first!")

    keep_k = 5

    log_folder = init_folder(log_folder)
    #out_obj_folder = init_folder(out_obj_folder)
    #out_model_folder = init_folder(out_model_folder)
    
    data_stru = return_data_stru(num_classes, start_class, attr_num, attr_len, class_column)

    file_list = list_files(data_folder)

    file_count = 0

    class_column = 0
    header = True

    delimiter = ' '
    loop_count = -1

    for train_file in file_list:
        if file_keyword not in train_file:
            continue
        loop_count = loop_count + 1
        file_key = train_file.replace('.txt', '')
        log_file = log_folder + data_keyword + '_' + file_key + '_' + function_keyword + '_class' + str(class_id) + '_' + method + "_top" + str(n_selected_features) +'.log'
        print "log file: " + log_file
    
        logger = setup_logger(log_file, 'logger_' + str(loop_count))
        logger.info('\nlog file: ' + log_file)
        logger.info(train_file)
        logger.info('method: ' + method)
        logger.info('============')
        

        test_file = train_file.replace('train', 'test')
        
        train_x_matrix, train_y_vector, test_x_matrix, test_y_vector = train_test_file_reading(
            data_folder + train_file, data_folder + test_file, class_column, delimiter, header)
        n_samples, n_col = train_x_matrix.shape
        train_x_matrix = train_x_matrix.reshape(n_samples, attr_num, attr_len)
        n_samples, n_col = test_x_matrix.shape
        test_x_matrix = test_x_matrix.reshape(n_samples, attr_num, attr_len)
        if file_count == 0:
            logger.info('train matrix shape: ' + str(train_x_matrix.shape))
            logger.info('train label shape: ' + str(train_y_vector.shape))
            logger.info('test matrix shape: ' + str(test_x_matrix.shape))
            logger.info('test label shape: ' + str(test_y_vector.shape))
        
        min_class = min(train_y_vector)
        
        max_class = max(train_y_vector) + 1
        for c in range(min_class, max_class):
            logger.info("Class: " + str(c))
            temp_train_y_vector = np.where(train_y_vector == c, 1, 0)
            temp_test_y_vector = np.where(test_y_vector == c, 1, 0)
            top_features = fixed_width_forward_multitime(train_x_matrix, temp_train_y_vector, test_x_matrix, temp_test_y_vector, n_selected_features, keep_k, data_keyword, file_key, method, cnn_setting_file, logger)
            logger.info("Top Features For Class " +str(c) + ": " + str(top_features))
            logger.info("End Of Class: " + str(c))
Exemple #5
0
def multi_projected_cnn_classification_main(parameter_file, file_keyword, function_keyword="multi_proj_classification"):
    data_keyword, data_folder, attr_num, attr_len, num_classes, start_class, class_column, class_id, obj_folder, top_k, method, log_folder, cnn_obj_folder, cnn_temp_folder, cnn_setting_file = read_feature_classification(parameter_file, function_keyword)

    obj_keyword = obj_folder.split('/')[-2]
    
    model_saved_folder = "../../object/" + data_keyword + "/projected_classification/" + obj_keyword + "_top" + str(top_k) + "_cnn_model_folder/"
    print obj_keyword
    print cnn_obj_folder
    print model_saved_folder
    top_keyword = "_top" + str(top_k) + "."
    group_all = False

    log_folder = init_folder(log_folder)
    #cnn_obj_folder = init_folder(cnn_obj_folder)
    #cnn_temp_folder = init_folder(cnn_temp_folder)
    
    data_stru = return_data_stru(num_classes, start_class, attr_num, attr_len, class_column)

    file_list = list_files(data_folder)
    obj_list = list_files(obj_folder)
    file_count = 0

    class_column = 0
    header = True

    cnn_setting = return_cnn_setting_from_file(cnn_setting_file)
    cnn_setting.save_obj_folder = cnn_obj_folder
    cnn_setting.temp_obj_folder = cnn_temp_folder
    cnn_setting.eval_method = 'f1'
    #init_folder(cnn_obj_folder)
    #init_folder(cnn_temp_folder) 

    save_obj_folder = "../../object/" + data_keyword + "/" + function_keyword + "/" + obj_keyword + "/" 
    save_obj_folder = init_folder(save_obj_folder)

    delimiter = ' '
    loop_count = -1
    for train_file in file_list:
        if file_keyword not in train_file:
            continue
        loop_count = loop_count + 1
        file_key = train_file.replace('.txt', '')
        log_file = log_folder + data_keyword + '_' + file_key + '_' + function_keyword + '_class' + str(class_id) + '_top' + str(top_k) + '_' + method + '.log'
    
        print "log file: " + log_file
    
        logger = setup_logger(log_file, 'logger_' + str(loop_count))
        logger.info('\nlog file: ' + log_file)
        logger.info(train_file)
        logger.info('cnn setting:\n ' + cnn_setting.to_string())
        logger.info('method: ' + method)
        logger.info('============')
        found_obj_file = ''
        for obj_file in obj_list:
            if file_key in obj_file:
                found_obj_file = obj_file
                break
        if found_obj_file == '':
            raise Exception('No obj file found')
        #
        found_obj_file = obj_folder + found_obj_file

        feature_dict = load_obj(found_obj_file)[0]
        feature_dict = np.array(feature_dict)
        logger.info("feature array shape: " + str(feature_dict.shape))
        
        test_file = train_file.replace('train', 'test')

        train_x_matrix, train_y_vector, test_x_matrix, test_y_vector, attr_num = train_test_file_reading_with_attrnum(
            data_folder + train_file, data_folder + test_file, class_column, delimiter, header)
        

        train_x_matrix = train_test_transpose(train_x_matrix, attr_num, attr_len, False)
        test_x_matrix = train_test_transpose(test_x_matrix, attr_num, attr_len, False)

        if file_count == 0:
            logger.info('train matrix shape: ' + str(train_x_matrix.shape))
            logger.info('train label shape: ' + str(train_y_vector.shape))
            logger.info('test matrix shape: ' + str(test_x_matrix.shape))
            logger.info('test label shape: ' + str(test_y_vector.shape))
            logger.info("topk: " + str(top_k) )
        data_stru.attr_num = top_k
        fold_accuracy, fold_f1_list, fold_load_time, fold_test_time = run_load_predict_cnn(file_key, model_saved_folder, feature_dict, top_k, test_x_matrix, test_y_vector, data_stru, cnn_setting, group_all, save_obj_folder, logger)

        logger.info("Fold ACC: " + str(fold_accuracy))
        logger.info("Fold F1 list: " + str(fold_f1_list))
        logger.info(method + ' fold training time (sec):' + str(fold_load_time))
        logger.info(method + ' fold testing time (sec):' + str(fold_test_time))
Exemple #6
0
def global_classification_main(parameter_file, file_keyword):
    function_keyword = "global_classification"
    data_keyword, data_folder, attr_num, attr_len, num_classes, start_class, class_column, class_id, obj_folder, top_k, method, log_folder, cnn_obj_folder, cnn_temp_folder, cnn_setting_file = read_feature_classification(
        parameter_file, function_keyword)

    data_stru = return_data_stru(num_classes, start_class, attr_num, attr_len,
                                 class_column)

    file_list = list_files(data_folder)
    obj_list = list_files(obj_folder)
    file_count = 0

    class_column = 0
    header = True

    cnn_setting = return_cnn_setting_from_file(cnn_setting_file)
    cnn_setting.save_obj_folder = cnn_obj_folder
    cnn_setting.temp_obj_folder = cnn_temp_folder
    cnn_setting.eval_method = 'f1'
    init_folder(cnn_obj_folder)
    init_folder(cnn_temp_folder)

    all_result_matrix = np.zeros((10, num_classes))

    train_file_vector = []
    prediction_matrix = []
    f1_value_matrix = []
    accuracy_vector = []
    delimiter = ' '
    all_accuracy = 0
    all_train_time = 0
    all_test_time = 0
    loop_count = -1
    for train_file in file_list:
        if file_keyword not in train_file:
            continue
        loop_count = loop_count + 1
        file_key = train_file.replace('.txt', '')
        log_file = log_folder + data_keyword + '_' + file_key + '_' + function_keyword + '_class' + str(
            class_id) + '_top' + str(top_k) + '_' + method + '.log'

        print "log file: " + log_file

        logger = setup_logger(log_file, 'logger_' + str(loop_count))
        logger.info('\nlog file: ' + log_file)
        logger.info(train_file)
        logger.info('cnn setting:\n ' + cnn_setting.to_string())
        logger.info('method: ' + method)
        logger.info('============')
        continue
        found_obj_file = ''
        for obj_file in obj_list:
            if file_key in obj_file:
                found_obj_file = obj_file
                break
        if found_obj_file == '':
            raise Exception('No obj file found')

        print found_obj_file
        print cnn_setting.save_obj_folder + file_key + "_" + method + "_projected_result.ckpt"
        #
        found_obj_file = obj_folder + found_obj_file

        feature_dict = load_obj(found_obj_file)[0]
        feature_dict = np.array(feature_dict)
        logger.info("feature array shape: " + str(feature_dict.shape))

        test_file = train_file.replace('train', 'test')

        train_x_matrix, train_y_vector, test_x_matrix, test_y_vector, attr_num = train_test_file_reading_with_attrnum(
            data_folder + train_file, data_folder + test_file, class_column,
            delimiter, header)

        if file_count == 0:
            logger.info('train matrix shape: ' + str(train_x_matrix.shape))
            logger.info('train label shape: ' + str(train_y_vector.shape))
            logger.info('test matrix shape: ' + str(test_x_matrix.shape))
            logger.info('test label shape: ' + str(test_y_vector.shape))

        train_x_matrix = train_test_transpose(train_x_matrix, attr_num,
                                              attr_len, False)
        test_x_matrix = train_test_transpose(test_x_matrix, attr_num, attr_len,
                                             False)
        data_stru.attr_num = top_k
        fold_accuracy, fold_avg_eval, fold_predict_y, fold_train_time, fold_test_time, fold_predict_matrix = run_feature_projected_cnn(
            train_x_matrix, train_y_vector, test_x_matrix, test_y_vector,
            data_stru, cnn_setting, feature_dict, top_k,
            file_key + '_count' + str(file_count), class_id, logger)

        prediction_matrix.append(fold_predict_y)
        logger.info("Fold F1: " + str(fold_f1_value_list))
        accuracy_vector.append(fold_accuracy)
        all_accuracy = all_accuracy + fold_accuracy
        all_train_time = all_train_time + fold_train_time
        all_test_time = all_test_time + fold_test_time
        logger.info(method + ' fold accuracy: ' + str(fold_accuracy))
        logger.info(method + ' fold training time (sec):' +
                    str(fold_train_time))
        logger.info(method + ' fold testing time (sec):' + str(fold_test_time))
        save_obj([
            fold_accuracy, fold_avg_eval, fold_predict_y, fold_train_time,
            fold_test_time, fold_predict_matrix
        ], save_obj_folder + file_key + "_" + method +
                 "_global_cnn_result.ckpt")