Exemple #1
0
def brute_force():
    # Prepeare empty list for the calibration parameters:
    parameters_list = []
    # Set step size for calibration
    min_p = parameters.getParametersforCalibration()[0]
    max_p = parameters.getParametersforCalibration()[1]
    stepsize = 0.05  #parameters.getParametersforCalibration()[2]

    # Assure that steps in the loop have 3 decimal place only
    p_steps = np.around(np.arange(min_p, max_p + stepsize, stepsize),
                        decimals=3)

    # Print calibration properties
    print('Case study: ', parameters.getCountryName())
    print('Number of iterations: ', parameters.getNumberofIterations())
    print('Min parameter value: ', min_p)
    print('Max parameter value: ', max_p)
    print('Parameter step: ', stepsize)
    # Get the possible combination of parameters:
    for p1, p2, p3, p4 in ((a, b, c, d) for a in p_steps for b in p_steps
                           for c in p_steps for d in p_steps):
        sumOfParameters = p1 + p2 + p3 + p4
        if (sumOfParameters > 0.9999 and sumOfParameters < 1.0001):
            parameters_list.append([p1, p2, p3, p4])

    # Return a list with parameters combinations
    return parameters_list
Exemple #2
0
  def __init__(self, nr, weights):
    DynamicModel.__init__(self)
    # number for reference
    self.currentSampleNumber = nr
    # parameters to calibrate
    self.weightDict = {1: weights}
    # input and output folders
    country = parameters.getCountryName()
    results_mainfolder = os.path.join(work_dir, 'results')
    if not os.path.isdir(results_mainfolder):
      os.mkdir(results_mainfolder)
    output_mainfolder = os.path.join(results_mainfolder, country)
    if not os.path.isdir(output_mainfolder):
      os.mkdir(output_mainfolder)
    self.outputfolder = os.path.join(results_mainfolder, country, str(nr))
    if not os.path.isdir(self.outputfolder):
      os.mkdir(self.outputfolder)
    self.inputfolder = os.path.join('input_data', country)
    setclone(self.inputfolder + '/nullmask')
##    setglobaloption('nondiagonal')

    # Save the parameters as a list to the folder with the calculated metrics
    pName = 'parameters_iteration_' + str(nr) + '.obj'
    pPath = os.path.join(self.outputfolder, pName)
    parametersFile = open(pPath, 'wb')
    pickle.dump(weights, parametersFile)
    parametersFile.close()
Exemple #3
0
  def __init__(self, typeNr, environment, relatedTypeList, suitFactorList, \
               weightList, variableDict, noise, nullMask, \
               windowLengthRealization):
    """Create LandUseType object that represents a class on the land use map.

    Takes ten arguments:
    typeNr -- class nr of the land use type on the land use map
    environment -- global land use map that will evolve
    relatedTypeList -- list with land use type next to which growth is preferred
    suitFactorList -- list of suitability factors the type takes into account
    weightList -- list of relative weights for those factors
    variableDict -- dictionary in which inputs for factors are found
    noise -- very small random noise to ensure cells can't get same suitability
    nullMask -- map with value 0 for study area and No Data outside
    windowLengthRealization -- window length for neighborhood function (stoch)
    
    """
    
    self.typeNr = typeNr
    self.environment = environment
    self.relatedTypeList = relatedTypeList
    self.suitFactorList = suitFactorList
    self.weightList = weightList
    self.variableDict = variableDict
    self.noise = noise
    self.nullMask = nullMask

    self.toMeters = parameters.getConversionUnit()
    self.windowLengthRealization = windowLengthRealization
    self.country = parameters.getCountryName()
Exemple #4
0
  def __init__(self, types, nullMask):
    """Construct a land use object with a nr of types and an environment."""
    self.types = types
    self.nrOfTypes = len(types)
    #print('\nnr of dynamic land use types is:', self.nrOfTypes)
##    self.environment = environment
    # Map with 0 in study area and No Data outside, used for cover() functions
    self.nullMask = nullMask
    self.toMeters = parameters.getConversionUnit()
    self.country = parameters.getCountryName()
metricNames = parameters.getSumStats()

# Get the number of parameter iterations and number of time step defined in the parameter.py script
nrOfTimesteps = parameters.getNrTimesteps()
numberOfIterations = parameters.getNumberofIterations()
iterations = range(1, numberOfIterations + 1, 1)
timeSteps = range(1, nrOfTimesteps + 1, 1)

# Get the observed time steps. Time steps relate to the year of the CLC data, where 1990 was time step 0.
obsSampleNumbers = [1]  #range(1,20+1,1) <- for stochastic model
obsTimeSteps = parameters.getObsTimesteps()
# Read the reference files
refArray = parameters.getColFiles()

# Path to the folder with the metrics stored
country = parameters.getCountryName()
resultFolder = os.path.join(work_dir, 'results', country)
output_mainfolder = os.path.join(resultFolder, "metrics")

#################
### FUNCTIONS ###
#################

def openPickledSamplesAndTimestepsAsNumpyArray(basename,iterations,timesteps, \
                                               obs=False):
    output = []

    for timestep in timesteps:
        allIterations = []

        for i in iterations:  # Loop parameters
import string
import os, numpy
import parameters
##from pcraster import *
##from pcraster.framework import *

# Get work directory
work_dir = parameters.getWorkDir()
inputfolder = os.path.join(work_dir, 'input_data', parameters.getCountryName())


def map2Array(filename, rowColFile):
    """Selects values at row, col from raster name in Monte Carlo samples.

  filename -- Name of raster.
  rowColFile -- File with row and col index of cell to read.
  The returned array does not contain missing values so the size is minimal
  sampleNumbers but possibly smaller.

  Returned array has elements of type numpy.float32"""
    sampleFile = open(rowColFile, 'r')
    samplePoints = sampleFile.readlines()
    sampleFile.close()
    amap = readmap(filename)
    ##  mask = numpy.zeros((1, len(samplePoints))).astype(numpy.bool_)
    ##  array = numpy.zeros((1, len(samplePoints))).astype(numpy.float32)
    mask = numpy.zeros(len(samplePoints)).astype(numpy.bool_)
    array = numpy.zeros(len(samplePoints)).astype(numpy.float32)
    j = 0
    for point in samplePoints:
        attributes = point.split()