def initialize(self, out_dir): if not gfile.Exists(out_dir / "tb"): gfile.MakeDirs(out_dir / "tb") if not gfile.Exists(out_dir / "weights"): gfile.MakeDirs(out_dir / "weights") if not gfile.Exists(out_dir / "policy"): gfile.MakeDirs(out_dir / "policy") if not gfile.Exists(out_dir / "videos"): gfile.MakeDirs(out_dir / "videos") self.env = gym.from_config(self.env_params) self.initialize_params()
def initialize(self, out_dir): if not gfile.Exists(out_dir / "tb"): gfile.MakeDirs(out_dir / "tb") if not gfile.Exists(out_dir / "weights"): gfile.MakeDirs(out_dir / "weights") if not gfile.Exists(out_dir / "weights"): gfile.MakeDirs(out_dir / "weights") if not gfile.Exists(out_dir / "data"): gfile.MakeDirs(out_dir / "data") self.model.initialize() self.env = gym.from_config(self.env_params) self.model.make_summaries(self.env)
from path import Path from deepx import nn from parasol.experiment import run, sweep import parasol.gym as gym env_params = { "environment_name": "Reacher", "random_start": True, "random_target": True, "image": True, "image_dim": 64, } env = gym.from_config(env_params) do = env.get_state_dim() ds = 10 du = da = env.get_action_dim() horizon = 50 experiment = dict( experiment_name='reacher-image-mpc', experiment_type='train_vae', env=env_params, model=dict( do=do, du=du, ds=ds, da=da, horizon=horizon, state_encoder=(nn.Reshape(do, [64, 64, 3]) >> nn.Convolution([7, 7, 64], strides=(1, 1)) >> nn.Relu() >> nn.Convolution([5, 5, 32], strides=(2, 2)) >> nn.Convolution([3, 3, 8], strides=(2, 2)) >> nn.Flatten() >> nn.Relu(256) >> nn.Gaussian(ds)), state_decoder=(nn.Relu(ds, 512) >> nn.Reshape([8, 8, 8]) >> nn.Deconvolution([3, 3, 32])