Exemple #1
0
    def contourf_paraview(self, array):
        assert array in self.reader.PointArrays
        renderView = pvs.GetActiveViewOrCreate("RenderView")

        # get color transfer function/color map for 'array'
        LUT = pvs.GetOpacityTransferFunction(array)

        # get color legend/bar for LUT in view renderView
        LUTColorBar = pvs.GetScalarBar(LUT, renderView)
        return renderView, LUTColorBar
    def render(self):
        self.view = paraview.CreateRenderView()
        self.source = paraview.DICOMReaderdirectory(
            FileName=self.directory_path)
        self.display = paraview.Show(self.source, self.view)

        paraview.ResetCamera()
        camera = paraview.GetActiveCamera()
        self.view.CenterOfRotation = camera.GetFocalPoint()
        self.view.CameraParallelProjection = 1
        self.view.Background = [0, 0, 0]

        self.current_slice = self.display.Slice
        self.display.Representation = self.representation
        self.display.ColorArrayName = self.array_name
        paraview.ColorBy(self.display, self.array_name)

        color_map = paraview.GetColorTransferFunction(self.array_name,
                                                      self.display)
        opacity_map = paraview.GetOpacityTransferFunction(
            self.array_name, self.display)

        scale_min = color_map.RGBPoints[0]
        scale_max = color_map.RGBPoints[-4]
        scale_middle = (scale_max - scale_min) / 2
        self.scale_range = (scale_min, scale_max)

        color_map.RGBPoints = [
            scale_min,
            0.0,
            0.0,
            0.0,
            scale_max,
            1.0,
            1.0,
            1.0,
        ]

        opacity_map.Points = [
            scale_min,
            0.0,
            0.5,
            0.0,
            scale_middle,
            0.5,
            0.5,
            0.0,
            scale_max,
            1.0,
            0.5,
            0.0,
        ]

        paraview.Render(self.view)
    def createOpacityTransferFunction(self, var, points=None):
        """Create an opacity transfer function/color map
        """

        # get color transfer function/color map
        fct = pv.GetOpacityTransferFunction(var)
        if points:
            fct.Points = points
        fct.ScalarRangeInitialized = 1

        return fct
    def set_opacity_middle_point(self, point, opacity):
        opacity_map = paraview.GetOpacityTransferFunction(
            self.array_name, self.display)
        opacity_points = []

        opacity_points.extend(opacity_map.Points[:4])
        opacity_points.extend([point, opacity, 0.5, 0.0])
        opacity_points.extend(opacity_map.Points[-4:])

        opacity_map.Points = opacity_points

        paraview.Render(self.view)
Exemple #5
0
    def show(self, key_array="x_velocity", source=None, rescale=False):
        """Show the rendered output on the screen."""
        Input = source if source else self.nek5000

        display = pv.Show(Input, self.renderView1)
        pv.ColorBy(display, ("POINTS", key_array))
        if rescale:
            display.RescaleTransferFunctionToDataRange(True, False)
        display.SetScalarBarVisibility(source, True)

        # ... lot of parameters are possible here

        pv.SetActiveSource(source)

        try:
            LUT = pv.GetColorTransferFunction(key_array)
            PWF = pv.GetOpacityTransferFunction(key_array)
        except AttributeError:
            pass

        return display
 def get_opacity_middle_point(self):
     opacity_map = paraview.GetOpacityTransferFunction(
         self.array_name, self.display)
     return opacity_map.Points[4], opacity_map.Points[5]
kerner_all = simple.servermanager.Fetch(kerner_kernelxdmf)

# Apparently, it is possible to use any name here. We just need a
# transfer function which we can modify later
LUT = simple.GetColorTransferFunction('HalliGalli')
LUT.RGBPoints = [
    -1e-10, 0.231373, 0.298039, 0.752941, 0, 1.0, 1.0, 1.0, 1e-10, 0.705882,
    0.0156863, 0.14902
]
LUT.NanColor = [0.500008, 0.0, 0.0]
LUT.ScalarRangeInitialized = 1.0

# get any opacity transfer function/opacity map
# Not used so far
PWF = simple.GetOpacityTransferFunction('HalliGalli')
PWF.Points = [-1e-10, 0.0, 0.5, 0.0, 1e-10, 1.0, 0.5, 0.0]
PWF.ScalarRangeInitialized = 1

# setup the color legend parameters for each legend in this view

# get color legend/bar for LUT in view renderView1
LUTColorBar = simple.GetScalarBar(LUT, renderView1)
LUTColorBar.Position = [0.8322310304209063, 0.50956937799043066]
LUTColorBar.Position2 = [0.12, 0.43000000000000077]
LUTColorBar.Title = 'K_x [s/m^3]'
LUTColorBar.ComponentTitle = ''
LUTColorBar.TitleColor = [0.3137, 0.3137, 0.3137]
LUTColorBar.LabelColor = [0.3137, 0.3137, 0.3137]

# Loop over all Point variables in file and print them
def batchVis(c1File,particleFile,step,saveAs):
    """Renders a bijel top down view in paraview and saves a screenshot."""
    import paraview.simple as pv
    # visualize a vtk file 
    c1 = pv.LegacyVTKReader(FileNames=c1File)
    p = pv.LegacyVTKReader(FileNames=particleFile)
    renderView1 = pv.GetActiveViewOrCreate('RenderView')
    renderView1.ViewSize = [1298, 860]
    renderView1.Background = [1.0, 1.0, 1.0]
    renderView1.InteractionMode = '2D'
    pDisplay = pv.Show(p, renderView1)
    c1Display = pv.Show(c1, renderView1)

    # create particle glyphs
    glyph = pv.Glyph(Input=p,GlyphType="Sphere")
    glyph.ScaleFactor = 1.0
    glyph.GlyphMode = 'All Points'
    glyph.GlyphType.Radius = 1.0
    glyph.GlyphType.ThetaResolution = 20
    glyph.GlyphType.PhiResolution = 20
    glyph.Scalars = ['POINTS','radius']
    glyph.Vectors = ['POINTS','None']
    glyph.ScaleMode = 'scalar'

    # show data in view
    glyphDisplay = pv.Show(glyph, renderView1)
    pv.ColorBy(glyphDisplay, None)
    pv.SetActiveSource(c1)
    pv.ColorBy(c1Display, ('POINTS', 'c1'))
    c1Display.RescaleTransferFunctionToDataRange(True)
    c1Display.SetRepresentationType('Volume')

    # make box outline
    # box = pv.Box()
    # box.XLength = 128.0
    # box.YLength = 128.0
    # box.ZLength = 64.0
    # box.Center = [64.0, 64.0, 32.0]
    # boxDisplay = pv.Show(box, renderView1)
    # boxDisplay.SetRepresentationType('Outline')
    # boxDisplay.AmbientColor = [0.0, 0.0, 0.0]

    # set coloring of c1
    c1LUT = pv.GetColorTransferFunction('c1')
    c1LUT.RGBPoints = [0.006000000052154064, 0.231373, 0.298039, 0.752941, 0.5120000033639371, 0.865003, 0.865003, 0.865003, 1.0180000066757202, 0.705882, 0.0156863, 0.14902]
    c1LUT.ColorSpace = 'Diverging'
    c1LUT.BelowRangeColor = [0.0, 0.0, 0.0]
    c1LUT.AboveRangeColor = [1.0, 1.0, 1.0]
    c1LUT.NanColor = [1.0, 1.0, 0.0]
    c1LUT.Discretize = 1
    c1LUT.NumberOfTableValues = 256
    c1LUT.ScalarRangeInitialized = 1.0
    c1LUT.AllowDuplicateScalars = 1

    c1PWF = pv.GetOpacityTransferFunction('c1')
    c1PWF.Points = [0.0, 0.05, 0.5, 0.0, 0.3, 0.05, 0.5, 0.0, 0.4, 0.5, 0.5, 0.0, 0.6, 0.5, 0.5, 0.0, 0.7, 0.05, 0.5, 0.0, 1., 0.05, 0.5, 0.0]

    # annotate time step in rendering
    # text = pv.Text
    # text.Text = 'Step '+str(step)
    # textDisplay = pv.Show(text,renderView1)
    # textDisplay.Color = [0.0, 0.0, 0.0]
    # textDisplay.WindowLocation = 'UpperCenter'

    # reset view to fit data
    renderView1.ResetCamera()
    # pv.Render()

    # save screen shot
    viewLayout1 = pv.GetLayout()
    print(saveAs)
    pv.SaveScreenshot(saveAs, layout=viewLayout1, magnification=1, quality=100)

    # clean up
    # pv.Delete(box)
    pv.Delete(glyph)
    pv.Delete(p)
    pv.Delete(c1)
    del c1
    del p
    del glyph
Exemple #9
0
def render_frames(
    scene,
    frames_dir=None,
    frame_window=None,
    render_missing_frames=False,
    save_state_to_file=None,
    no_render=False,
    show_preview=False,
    show_progress=False,
    job_id=None,
):
    # Validate scene
    if scene["View"]["ViewSize"][0] % 16 != 0:
        logger.warning(
            "The view width should be a multiple of 16 to be compatible with"
            " QuickTime.")
    if scene["View"]["ViewSize"][1] % 2 != 0:
        logger.warning(
            "The view height should be even to be compatible with QuickTime.")

    render_start_time = time.time()

    # Setup layout
    layout = pv.CreateLayout("Layout")

    # Setup view
    if "Background" in scene["View"]:
        bg_config = scene["View"]["Background"]
        del scene["View"]["Background"]
        if isinstance(bg_config, list):
            if isinstance(bg_config[0], list):
                assert len(bg_config) == 2, (
                    "When 'Background' is a list of colors, it must have 2"
                    " entries.")
                bg_config = dict(
                    BackgroundColorMode="Gradient",
                    Background=parse_as.color(bg_config[0]),
                    Background2=parse_as.color(bg_config[1]),
                )
            else:
                bg_config = dict(
                    BackgroundColorMode="Single Color",
                    Background=parse_as.color(bg_config),
                )
            bg_config["UseColorPaletteForBackground"] = 0
            scene["View"].update(bg_config)
            bg_config = None
    else:
        bg_config = None
    view = pv.CreateRenderView(**scene["View"])
    pv.AssignViewToLayout(view=view, layout=layout, hint=0)

    # Set spherical background texture
    if bg_config is not None:
        bg_config["BackgroundColorMode"] = "Texture"
        skybox_datasource = bg_config["Datasource"]
        del bg_config["Datasource"]
        background_texture = pvserver.rendering.ImageTexture(
            FileName=parse_as.path(scene["Datasources"][skybox_datasource]))
        background_sphere = pv.Sphere(Radius=bg_config["Radius"],
                                      ThetaResolution=100,
                                      PhiResolution=100)
        background_texture_map = pv.TextureMaptoSphere(Input=background_sphere)
        pv.Show(
            background_texture_map,
            view,
            Texture=background_texture,
            BackfaceRepresentation="Cull Frontface",
            Ambient=1.0,
        )

    # Load the waveform data file
    waveform_h5file, waveform_subfile = parse_as.file_and_subfile(
        scene["Datasources"]["Waveform"])
    waveform_data = WaveformDataReader(FileName=waveform_h5file,
                                       Subfile=waveform_subfile)
    pv.UpdatePipeline()

    # Generate volume data from the waveform. Also sets the available time range.
    # TODO: Pull KeepEveryNthTimestep out of datasource
    waveform_to_volume_configs = scene["WaveformToVolume"]
    if isinstance(waveform_to_volume_configs, dict):
        waveform_to_volume_configs = [{
            "Object": waveform_to_volume_configs,
        }]
        if "VolumeRepresentation" in scene:
            waveform_to_volume_configs[0]["VolumeRepresentation"] = scene[
                "VolumeRepresentation"]
    waveform_to_volume_objects = []
    for waveform_to_volume_config in waveform_to_volume_configs:
        volume_data = WaveformToVolume(
            WaveformData=waveform_data,
            SwshCacheDirectory=parse_as.path(
                scene["Datasources"]["SwshCache"]),
            **waveform_to_volume_config["Object"],
        )
        if "Modes" in waveform_to_volume_config["Object"]:
            volume_data.Modes = waveform_to_volume_config["Object"]["Modes"]
        if "Polarizations" in waveform_to_volume_config["Object"]:
            volume_data.Polarizations = waveform_to_volume_config["Object"][
                "Polarizations"]
        waveform_to_volume_objects.append(volume_data)

    # Compute timing and frames information
    time_range_in_M = (
        volume_data.TimestepValues[0],
        volume_data.TimestepValues[-1],
    )
    logger.debug(f"Full available data time range: {time_range_in_M} (in M)")
    if "FreezeTime" in scene["Animation"]:
        frozen_time = scene["Animation"]["FreezeTime"]
        logger.info(f"Freezing time at {frozen_time}.")
        view.ViewTime = frozen_time
        animation = None
    else:
        if "Crop" in scene["Animation"]:
            time_range_in_M = scene["Animation"]["Crop"]
            logger.debug(f"Cropping time range to {time_range_in_M} (in M).")
        animation_speed = scene["Animation"]["Speed"]
        frame_rate = scene["Animation"]["FrameRate"]
        num_frames = animate.num_frames(
            max_animation_length=time_range_in_M[1] - time_range_in_M[0],
            animation_speed=animation_speed,
            frame_rate=frame_rate,
        )
        animation_length_in_seconds = num_frames / frame_rate
        animation_length_in_M = animation_length_in_seconds * animation_speed
        time_per_frame_in_M = animation_length_in_M / num_frames
        logger.info(f"Rendering {animation_length_in_seconds:.2f}s movie with"
                    f" {num_frames} frames ({frame_rate} FPS or"
                    f" {animation_speed:.2e} M/s or"
                    f" {time_per_frame_in_M:.2e} M/frame)...")
        if frame_window is not None:
            animation_window_num_frames = frame_window[1] - frame_window[0]
            animation_window_time_range = (
                time_range_in_M[0] + frame_window[0] * time_per_frame_in_M,
                time_range_in_M[0] +
                (frame_window[1] - 1) * time_per_frame_in_M,
            )
            logger.info(
                f"Restricting rendering to {animation_window_num_frames} frames"
                f" (numbers {frame_window[0]} to {frame_window[1] - 1}).")
        else:
            animation_window_num_frames = num_frames
            animation_window_time_range = time_range_in_M
            frame_window = (0, num_frames)

        # Setup animation so that sources can retrieve the `UPDATE_TIME_STEP`
        animation = pv.GetAnimationScene()
        # animation.UpdateAnimationUsingDataTimeSteps()
        # Since the data can be evaluated at arbitrary times we define the time steps
        # here by setting the number of frames within the full range
        animation.PlayMode = "Sequence"
        animation.StartTime = animation_window_time_range[0]
        animation.EndTime = animation_window_time_range[1]
        animation.NumberOfFrames = animation_window_num_frames
        logger.debug(
            f"Animating from scene time {animation.StartTime} to"
            f" {animation.EndTime} in {animation.NumberOfFrames} frames.")

        def scene_time_from_real(real_time):
            return (real_time / animation_length_in_seconds *
                    animation_length_in_M)

        # For some reason the keyframe time for animations is expected to be within
        # (0, 1) so we need to transform back and forth from this "normalized" time
        def scene_time_from_normalized(normalized_time):
            return animation.StartTime + normalized_time * (
                animation.EndTime - animation.StartTime)

        def normalized_time_from_scene(scene_time):
            return (scene_time - animation.StartTime) / (animation.EndTime -
                                                         animation.StartTime)

        # Setup progress measuring already here so volume data computing for
        # initial frame is measured
        if show_progress and not no_render:
            logging.getLogger().handlers = [TqdmLoggingHandler()]
            animation_window_frame_range = tqdm.trange(
                animation_window_num_frames,
                desc="Rendering",
                unit="frame",
                miniters=1,
                position=job_id,
            )
        else:
            animation_window_frame_range = range(animation_window_num_frames)

        # Set the initial time step
        animation.GoToFirst()

    # Display the volume data. This will trigger computing the volume data at the
    # current time step.
    for volume_data, waveform_to_volume_config in zip(
            waveform_to_volume_objects, waveform_to_volume_configs):
        vol_repr = (waveform_to_volume_config["VolumeRepresentation"]
                    if "VolumeRepresentation" in waveform_to_volume_config else
                    {})
        volume_color_by = config_color.extract_color_by(vol_repr)
        if (vol_repr["VolumeRenderingMode"] == "GPU Based"
                and len(volume_color_by) > 2):
            logger.warning(
                "The 'GPU Based' volume renderer doesn't support multiple"
                " components.")
        volume = pv.Show(volume_data, view, **vol_repr)
        pv.ColorBy(volume, value=volume_color_by)

    if "Slices" in scene:
        for slice_config in scene["Slices"]:
            slice_obj_config = slice_config.get("Object", {})
            slice = pv.Slice(Input=volume_data)
            slice.SliceType = "Plane"
            slice.SliceOffsetValues = [0.0]
            slice.SliceType.Origin = slice_obj_config.get(
                "Origin", [0.0, 0.0, -0.3])
            slice.SliceType.Normal = slice_obj_config.get(
                "Normal", [0.0, 0.0, 1.0])
            slice_rep = pv.Show(slice, view,
                                **slice_config.get("Representation", {}))
            pv.ColorBy(slice_rep, value=volume_color_by)

    # Display the time
    if "TimeAnnotation" in scene:
        time_annotation = pv.AnnotateTimeFilter(volume_data,
                                                **scene["TimeAnnotation"])
        pv.Show(time_annotation, view, **scene["TimeAnnotationRepresentation"])

    # Add spheres
    if "Spheres" in scene:
        for sphere_config in scene["Spheres"]:
            sphere = pv.Sphere(**sphere_config["Object"])
            pv.Show(sphere, view, **sphere_config["Representation"])

    # Add trajectories and objects that follow them
    if "Trajectories" in scene:
        for trajectory_config in scene["Trajectories"]:
            trajectory_name = trajectory_config["Name"]
            radial_scale = (trajectory_config["RadialScale"]
                            if "RadialScale" in trajectory_config else 1.0)
            # Load the trajectory data
            traj_data_reader = TrajectoryDataReader(
                RadialScale=radial_scale,
                **scene["Datasources"]["Trajectories"][trajectory_name],
            )
            # Make sure the data is loaded so we can retrieve timesteps.
            # TODO: This should be fixed in `TrajectoryDataReader` by
            # communicating time range info down the pipeline, but we had issues
            # with that (see also `WaveformDataReader`).
            traj_data_reader.UpdatePipeline()
            if "Objects" in trajectory_config:
                with animate.restore_animation_state(animation):
                    follow_traj = FollowTrajectory(
                        TrajectoryData=traj_data_reader)
                for traj_obj_config in trajectory_config["Objects"]:
                    for traj_obj_key in traj_obj_config:
                        if traj_obj_key in [
                                "Representation",
                                "Visibility",
                                "TimeShift",
                                "Glyph",
                        ]:
                            continue
                        traj_obj_type = getattr(pv, traj_obj_key)
                        traj_obj_glyph = traj_obj_type(
                            **traj_obj_config[traj_obj_key])
                    follow_traj.UpdatePipeline()
                    traj_obj = pv.Glyph(Input=follow_traj,
                                        GlyphType=traj_obj_glyph)
                    # Can't set this in the constructor for some reason
                    traj_obj.ScaleFactor = 1.0
                    for glyph_property in (traj_obj_config["Glyph"] if "Glyph"
                                           in traj_obj_config else []):
                        setattr(
                            traj_obj,
                            glyph_property,
                            traj_obj_config["Glyph"][glyph_property],
                        )
                    traj_obj.UpdatePipeline()
                    if "TimeShift" in traj_obj_config:
                        traj_obj = animate.apply_time_shift(
                            traj_obj, traj_obj_config["TimeShift"])
                    pv.Show(traj_obj, view,
                            **traj_obj_config["Representation"])
                    if "Visibility" in traj_obj_config:
                        animate.apply_visibility(
                            traj_obj,
                            traj_obj_config["Visibility"],
                            normalized_time_from_scene,
                            scene_time_from_real,
                        )
            if "Tail" in trajectory_config:
                with animate.restore_animation_state(animation):
                    traj_tail = TrajectoryTail(TrajectoryData=traj_data_reader)
                if "TimeShift" in trajectory_config:
                    traj_tail = animate.apply_time_shift(
                        traj_tail, trajectory_config["TimeShift"])
                tail_config = trajectory_config["Tail"]
                traj_color_by = config_color.extract_color_by(tail_config)
                if "Visibility" in tail_config:
                    tail_visibility_config = tail_config["Visibility"]
                    del tail_config["Visibility"]
                else:
                    tail_visibility_config = None
                tail_rep = pv.Show(traj_tail, view, **tail_config)
                pv.ColorBy(tail_rep, value=traj_color_by)
                if tail_visibility_config is not None:
                    animate.apply_visibility(
                        traj_tail,
                        tail_visibility_config,
                        normalized_time_from_scene=normalized_time_from_scene,
                        scene_time_from_real=scene_time_from_real,
                    )
            if "Move" in trajectory_config:
                move_config = trajectory_config["Move"]
                logger.debug(
                    f"Animating '{move_config['guiName']}' along trajectory.")
                with h5py.File(trajectory_file, "r") as traj_data_file:
                    trajectory_data = np.array(
                        traj_data_file[trajectory_subfile])
                if radial_scale != 1.0:
                    trajectory_data[:, 1:] *= radial_scale
                logger.debug(f"Trajectory data shape: {trajectory_data.shape}")
                animate.follow_path(
                    gui_name=move_config["guiName"],
                    trajectory_data=trajectory_data,
                    num_keyframes=move_config["NumKeyframes"],
                    scene_time_range=time_range_in_M,
                    normalized_time_from_scene=normalized_time_from_scene,
                )

    # Add non-spherical horizon shapes (instead of spherical objects following
    # trajectories)
    if "Horizons" in scene:
        for horizon_config in scene["Horizons"]:
            with animate.restore_animation_state(animation):
                horizon = pv.PVDReader(FileName=scene["Datasources"]
                                       ["Horizons"][horizon_config["Name"]])
                if horizon_config.get("InterpolateTime", False):
                    horizon = pv.TemporalInterpolator(
                        Input=horizon, DiscreteTimeStepInterval=0)
            if "TimeShift" in horizon_config:
                horizon = animate.apply_time_shift(horizon,
                                                   horizon_config["TimeShift"],
                                                   animation)
            # Try to make horizon surfaces smooth. At low angular resoluton
            # they still show artifacts, so perhaps more can be done.
            horizon = pv.ExtractSurface(Input=horizon)
            horizon = pv.GenerateSurfaceNormals(Input=horizon)
            horizon_rep_config = horizon_config.get("Representation", {})
            if "Representation" not in horizon_rep_config:
                horizon_rep_config["Representation"] = "Surface"
            if "AmbientColor" not in horizon_rep_config:
                horizon_rep_config["AmbientColor"] = [0.0, 0.0, 0.0]
            if "DiffuseColor" not in horizon_rep_config:
                horizon_rep_config["DiffuseColor"] = [0.0, 0.0, 0.0]
            if "Specular" not in horizon_rep_config:
                horizon_rep_config["Specular"] = 0.2
            if "SpecularPower" not in horizon_rep_config:
                horizon_rep_config["SpecularPower"] = 10
            if "SpecularColor" not in horizon_rep_config:
                horizon_rep_config["SpecularColor"] = [1.0, 1.0, 1.0]
            if "ColorBy" in horizon_rep_config:
                horizon_color_by = config_color.extract_color_by(
                    horizon_rep_config)
            else:
                horizon_color_by = None
            horizon_rep = pv.Show(horizon, view, **horizon_rep_config)
            if horizon_color_by is not None:
                pv.ColorBy(horizon_rep, value=horizon_color_by)
            # Animate visibility
            if "Visibility" in horizon_config:
                animate.apply_visibility(
                    horizon,
                    horizon_config["Visibility"],
                    normalized_time_from_scene=normalized_time_from_scene,
                    scene_time_from_real=scene_time_from_real,
                )
            if "Contours" in horizon_config:
                for contour_config in horizon_config["Contours"]:
                    contour = pv.Contour(Input=horizon,
                                         **contour_config["Object"])
                    contour_rep = pv.Show(contour, view,
                                          **contour_config["Representation"])
                    pv.ColorBy(contour_rep, None)
                    if "Visibility" in horizon_config:
                        animate.apply_visibility(
                            contour,
                            horizon_config["Visibility"],
                            normalized_time_from_scene=
                            normalized_time_from_scene,
                            scene_time_from_real=scene_time_from_real,
                        )

    # Configure transfer functions
    if "TransferFunctions" in scene:
        for tf_config in scene["TransferFunctions"]:
            colored_field = tf_config["Field"]
            transfer_fctn = pv.GetColorTransferFunction(colored_field)
            opacity_fctn = pv.GetOpacityTransferFunction(colored_field)
            tf.configure_transfer_function(transfer_fctn, opacity_fctn,
                                           tf_config["TransferFunction"])

    # Save state file before configuring camera keyframes.
    # TODO: Make camera keyframes work with statefile
    if save_state_to_file is not None:
        pv.SaveState(save_state_to_file + ".pvsm")

    # Camera shots
    # TODO: Make this work with freezing time while the camera is swinging
    if animation is None:
        for i, shot in enumerate(scene["CameraShots"]):
            if (i == len(scene["CameraShots"]) - 1 or
                (shot["Time"] if "Time" in shot else 0.0) >= view.ViewTime):
                camera_motion.apply(shot)
                break
    else:
        camera_motion.apply_swings(
            scene["CameraShots"],
            scene_time_range=time_range_in_M,
            scene_time_from_real=scene_time_from_real,
            normalized_time_from_scene=normalized_time_from_scene,
        )

    # Report time
    if animation is not None:
        report_time_cue = pv.PythonAnimationCue()
        report_time_cue.Script = """
def start_cue(self): pass

def tick(self):
    import paraview.simple as pv
    import logging
    logger = logging.getLogger('Animation')
    scene_time = pv.GetActiveView().ViewTime
    logger.info(f"Scene time: {scene_time}")

def end_cue(self): pass
"""
        animation.Cues.append(report_time_cue)

    if show_preview and animation is not None:
        animation.PlayMode = "Real Time"
        animation.Duration = 10
        animation.Play()
        animation.PlayMode = "Sequence"

    if no_render:
        logger.info("No rendering requested. Total time:"
                    f" {time.time() - render_start_time:.2f}s")
        return

    if frames_dir is None:
        raise RuntimeError("Trying to render but `frames_dir` is not set.")
    if os.path.exists(frames_dir):
        logger.warning(
            f"Output directory '{frames_dir}' exists, files may be overwritten."
        )
    else:
        os.makedirs(frames_dir)

    if animation is None:
        pv.Render()
        pv.SaveScreenshot(os.path.join(frames_dir, "frame.png"))
    else:
        # Iterate over frames manually to support filling in missing frames.
        # If `pv.SaveAnimation` would support that, here's how it could be
        # invoked:
        # pv.SaveAnimation(
        #     os.path.join(frames_dir, 'frame.png'),
        #     view,
        #     animation,
        #     FrameWindow=frame_window,
        #     SuffixFormat='.%06d')
        # Note that `FrameWindow` appears to be buggy, so we set up the
        # `animation` according to the `frame_window` above so the frame files
        # are numberd correctly.
        for animation_window_frame_i in animation_window_frame_range:
            frame_i = frame_window[0] + animation_window_frame_i
            frame_file = os.path.join(frames_dir, f"frame.{frame_i:06d}.png")
            if render_missing_frames and os.path.exists(frame_file):
                continue
            logger.debug(f"Rendering frame {frame_i}...")
            animation.AnimationTime = (
                animation.StartTime +
                time_per_frame_in_M * animation_window_frame_i)
            pv.Render()
            pv.SaveScreenshot(frame_file)
            logger.info(f"Rendered frame {frame_i}.")

    logger.info(
        f"Rendering done. Total time: {time.time() - render_start_time:.2f}s")
Exemple #10
0
    def updateUserSelectionLutProperties(self):
        lutProxy = simple.GetColorTransferFunction(USER_SELECTION)
        lutPwf = simple.GetOpacityTransferFunction(USER_SELECTION)

        if not lutProxy:
            print(
                'There is no such color transfer function (%s) at this time' %
                USER_SELECTION)
            return

        if not lutPwf:
            print(
                'There is no such opacity transfer function (%s) at this time'
                % USER_SELECTION)
            return

        preset = self.lutMap[SELECTION_COLORMAP]['IndexedColors']
        if not preset:
            print('You are missing the "%s" color map definition' %
                  SELECTION_COLORMAP)
            return

        activeAnnotation = self.activeSelectionInformation["activeAnnotation"]
        activeScores = self.activeSelectionInformation["activeScores"]

        annoType = activeAnnotation['selection']['type']
        annoScore = activeAnnotation['score']

        # append a 0 so unselected scores don't show by default.
        scoreOpacities = [ 1.0 if score['index'] in activeScores else 0.0 for score in self._serverScores ] + \
          [1.0 if self._unselectedIndex in activeScores else 0.0]

        numScores = len(self._serverScores)
        pwfPoints = []
        rgbPoints = []
        delX = 0.49

        # import pdb; pdb.set_trace()

        ### Inside the cases below I also need to create custom opacity and size pwfs for
        ### the "user selection" array

        ### We take into account the "activeScores" pushed here by the client
        ### so we can show/hide the appropriate subsets of points using a dedicated
        ### opacity transfer function on the lookup table

        usRange = [
            self.userSelPointSizeRange[0], self.userSelPointSizeRange[1]
        ]
        usDelta = (usRange[1] - usRange[0]) / numScores
        # unselected value is last, should be the minimum value.
        sizeStops = [
            usRange[0] + (i + 1) * usDelta for i in range(numScores - 1)
        ] + [usRange[1], usRange[0]]

        if annoType == 'range':
            scoreIndex = annoScore[0]
            rgbPoints = []
            pwfPoints = []
            self.userSelScalePoints = []
            for selVal in [scoreIndex, self._unselectedIndex]:
                presetOffset = selVal * 3
                # add the selected color
                rgbPoints += [selVal - delX
                              ] + preset[presetOffset:presetOffset + 3] + [
                                  selVal + delX
                              ] + preset[presetOffset:presetOffset + 3]
                opacity = scoreOpacities[selVal]
                pwfPoints += [
                    selVal - delX, opacity, 0.5, 0.0, selVal + delX, opacity,
                    0.5, 0.0
                ]
                self.userSelScalePoints += [
                    selVal - delX, sizeStops[selVal], 0.5, 0.0, selVal + delX,
                    sizeStops[selVal], 0.5, 0.0
                ]

        elif annoType == 'partition':
            self.userSelScalePoints = []
            for idx in range(len(annoScore)):
                scoreIndex = annoScore[idx]
                presetOffset = scoreIndex * 3

                x1 = scoreIndex - delX
                x2 = scoreIndex + delX
                opacity = scoreOpacities[scoreIndex]

                rgbPoints += [x1] + preset[presetOffset:presetOffset + 3]
                rgbPoints += [x2] + preset[presetOffset:presetOffset + 3]
                pwfPoints += [x1, opacity, 0.5, 0.0, x2, opacity, 0.5, 0.0]
                self.userSelScalePoints += [
                    x1, sizeStops[scoreIndex], 0.5, 0.0, x2,
                    sizeStops[scoreIndex], 0.5, 0.0
                ]
        elif annoType == 'empty':
            selVal = self._unselectedIndex
            opacity = scoreOpacities[selVal]
            rgbPoints = [selVal - delX] + preset[3 * selVal:3 * selVal + 3] + [
                selVal + delX
            ] + preset[3 * selVal:3 * selVal + 3]
            pwfPoints = [
                selVal - delX, opacity, 0.5, 0.0, selVal + delX, opacity, 0.5,
                0.0
            ]
            self.userSelScalePoints = [
                selVal - delX, usRange[0], 0.5, 0.0, selVal + delX, usRange[0],
                0.5, 0.0
            ]
        else:
            print('Unknown annotation selection type: %s' % annoType)
            return

        # print('rgbPoints', rgbPoints)
        # print('pwfPoints', pwfPoints)
        lutProxy.RGBPoints = rgbPoints
        lutProxy.ScalarRangeInitialized = 1.0

        if len(pwfPoints) > 0:
            lutPwf.Points = pwfPoints
            lutPwf.ScalarRangeInitialized = 1
            lutProxy.EnableOpacityMapping = 1
        else:
            lutProxy.EnableOpacityMapping = 0

        self._selectionLutInitialized = True

        # Let PV know that the VTK data has been modified
        if self.trivProducer:
            self.trivProducer.MarkModified(self.trivProducer)

        self.getApplication().InvokeEvent('UpdateEvent')
renderView1.Update()

# set scalar coloring
pv.ColorBy(ablnek5000Display, ('POINTS', 'x_velocity'))

# rescale color and/or opacity maps used to include current data range
ablnek5000Display.RescaleTransferFunctionToDataRange(True, False)

# show color bar/color legend
ablnek5000Display.SetScalarBarVisibility(renderView1, True)

# get color transfer function/color map for 'x_velocity'
x_velocityLUT = pv.GetColorTransferFunction('x_velocity')

# get opacity transfer function/opacity map for 'x_velocity'
x_velocityPWF = pv.GetOpacityTransferFunction('x_velocity')

# set scalar coloring
pv.ColorBy(ablnek5000Display, ('POINTS', 'y_velocity'))

# Hide the scalar bar for this color map if no visible data is colored by it.
pv.HideScalarBarIfNotNeeded(x_velocityLUT, renderView1)

# rescale color and/or opacity maps used to include current data range
ablnek5000Display.RescaleTransferFunctionToDataRange(True, False)

# show color bar/color legend
ablnek5000Display.SetScalarBarVisibility(renderView1, True)

# get color transfer function/color map for 'y_velocity'
y_velocityLUT = pv.GetColorTransferFunction('y_velocity')
Exemple #12
0
    def initialize(self):

        # Bring used components
        self.registerVtkWebProtocol(pv_protocols.ParaViewWebMouseHandler())
        self.registerVtkWebProtocol(pv_protocols.ParaViewWebViewPort())
        self.registerVtkWebProtocol(
            pv_protocols.ParaViewWebViewPortImageDelivery())
        self.registerVtkWebProtocol(amsProtocol())
        self.updateSecret(_DemoServer.authKey)

        # Disable interactor-based render calls
        simple.GetRenderView().EnableRenderOnInteraction = 0
        simple.GetRenderView().Background = [0, 0, 0]
        #cone = simple.Cone()
        #simple.Show(cone)

        # create a new 'EnSight Reader'

        #### disable automatic camera reset on 'Show'
        #paraview.simple._DisableFirstRenderCameraReset()

        # create a new 'EnSight Reader'
        matvizmofTFF90L91lpm100rpmcase = simple.EnSightReader(
            CaseFileName=
            '/Users/tomfool/tech/18/amgen/ams-102-AgileViz/EnSight/mat-viz-mofTFF-90L-9.1lpm-100rpm/mat-viz-mofTFF-90L-9.1lpm-100rpm.case'
        )
        matvizmofTFF90L91lpm100rpmcase.PointArrays = [
            'pressure', 'pressure_coefficient', 'dynamic_pressure',
            'absolute_pressure', 'total_pressure', 'rel_total_pressure',
            'density', 'density_all', 'velocity_magnitude', 'x_velocity',
            'y_velocity', 'z_velocity', 'axial_velocity', 'radial_velocity',
            'tangential_velocity', 'rel_velocity_magnitude',
            'relative_x_velocity', 'relative_y_velocity',
            'relative_z_velocity', 'rel_tangential_velocity',
            'mesh_x_velocity', 'mesh_y_velocity', 'mesh_z_velocity',
            'velocity_angle', 'relative_velocity_angle', 'vorticity_mag',
            'helicity', 'x_vorticity', 'y_vorticity', 'z_vorticity',
            'cell_reynolds_number', 'turb_kinetic_energy', 'turb_intensity',
            'turb_diss_rate', 'production_of_k', 'viscosity_turb',
            'viscosity_eff', 'viscosity_ratio', 'y_star', 'y_plus',
            'uds_0_scalar', 'uds_0_diff_scalar', 'viscosity_lam', 'wall_shear',
            'x_wall_shear', 'y_wall_shear', 'z_wall_shear',
            'skin_friction_coef', 'cell_partition_active',
            'cell_partition_stored', 'cell_id', 'cell_element_type',
            'cell_type', 'cell_zone', 'partition_neighbors', 'cell_weight',
            'x_coordinate', 'y_coordinate', 'z_coordinate', 'axial_coordinate',
            'angular_coordinate', 'abs_angular_coordinate',
            'radial_coordinate', 'face_area_magnitude', 'x_face_area',
            'y_face_area', 'z_face_area', 'cell_volume', 'orthogonal_quality',
            'cell_equiangle_skew', 'cell_equivolume_skew', 'face_handedness',
            'mark_poor_elememts', 'interface_overlap_fraction',
            'cell_wall_distance', 'adaption_function', 'adaption_curvature',
            'adaption_space_gradient', 'adaption_iso_value',
            'boundary_cell_dist', 'boundary_normal_dist', 'cell_volume_change',
            'cell_surface_area', 'cell_warp', 'cell_children',
            'cell_refine_level', 'mass_imbalance', 'strain_rate_mag',
            'dx_velocity_dx', 'dy_velocity_dx', 'dz_velocity_dx',
            'dx_velocity_dy', 'dy_velocity_dy', 'dz_velocity_dy',
            'dx_velocity_dz', 'dy_velocity_dz', 'dz_velocity_dz', 'dp_dx',
            'dp_dy', 'dp_dz', 'velocity'
        ]

        # get active view
        renderView1 = simple.GetActiveViewOrCreate('RenderView')
        # uncomment following to set a specific view size
        # renderView1.ViewSize = [1638, 1076]

        # show data in view
        matvizmofTFF90L91lpm100rpmcaseDisplay = simple.Show(
            matvizmofTFF90L91lpm100rpmcase, renderView1)

        # get color transfer function/color map for 'pressure'
        pressureLUT = simple.GetColorTransferFunction('pressure')

        # get opacity transfer function/opacity map for 'pressure'
        pressurePWF = simple.GetOpacityTransferFunction('pressure')

        # trace defaults for the display properties.
        matvizmofTFF90L91lpm100rpmcaseDisplay.Representation = 'Surface'
        matvizmofTFF90L91lpm100rpmcaseDisplay.ColorArrayName = [
            'POINTS', 'pressure'
        ]
        matvizmofTFF90L91lpm100rpmcaseDisplay.LookupTable = pressureLUT
        matvizmofTFF90L91lpm100rpmcaseDisplay.OSPRayScaleArray = 'pressure'
        matvizmofTFF90L91lpm100rpmcaseDisplay.OSPRayScaleFunction = 'PiecewiseFunction'
        matvizmofTFF90L91lpm100rpmcaseDisplay.SelectOrientationVectors = 'velocity'
        matvizmofTFF90L91lpm100rpmcaseDisplay.ScaleFactor = 0.07445502169430256
        matvizmofTFF90L91lpm100rpmcaseDisplay.SelectScaleArray = 'pressure'
        matvizmofTFF90L91lpm100rpmcaseDisplay.GlyphType = 'Arrow'
        matvizmofTFF90L91lpm100rpmcaseDisplay.GlyphTableIndexArray = 'pressure'
        matvizmofTFF90L91lpm100rpmcaseDisplay.GaussianRadius = 0.03722751084715128
        matvizmofTFF90L91lpm100rpmcaseDisplay.SetScaleArray = [
            'POINTS', 'pressure'
        ]
        matvizmofTFF90L91lpm100rpmcaseDisplay.ScaleTransferFunction = 'PiecewiseFunction'
        matvizmofTFF90L91lpm100rpmcaseDisplay.OpacityArray = [
            'POINTS', 'pressure'
        ]
        matvizmofTFF90L91lpm100rpmcaseDisplay.OpacityTransferFunction = 'PiecewiseFunction'
        matvizmofTFF90L91lpm100rpmcaseDisplay.DataAxesGrid = 'GridAxesRepresentation'
        matvizmofTFF90L91lpm100rpmcaseDisplay.SelectionCellLabelFontFile = ''
        matvizmofTFF90L91lpm100rpmcaseDisplay.SelectionPointLabelFontFile = ''
        matvizmofTFF90L91lpm100rpmcaseDisplay.PolarAxes = 'PolarAxesRepresentation'
        matvizmofTFF90L91lpm100rpmcaseDisplay.ScalarOpacityFunction = pressurePWF
        matvizmofTFF90L91lpm100rpmcaseDisplay.ScalarOpacityUnitDistance = 0.007476863260594431

        # init the 'PiecewiseFunction' selected for 'ScaleTransferFunction'
        matvizmofTFF90L91lpm100rpmcaseDisplay.ScaleTransferFunction.Points = [
            -152.6022491455078, 0.0, 0.5, 0.0, 144.73870849609375, 1.0, 0.5,
            0.0
        ]

        # init the 'PiecewiseFunction' selected for 'OpacityTransferFunction'
        matvizmofTFF90L91lpm100rpmcaseDisplay.OpacityTransferFunction.Points = [
            -152.6022491455078, 0.0, 0.5, 0.0, 144.73870849609375, 1.0, 0.5,
            0.0
        ]

        # init the 'GridAxesRepresentation' selected for 'DataAxesGrid'
        matvizmofTFF90L91lpm100rpmcaseDisplay.DataAxesGrid.XTitleFontFile = ''
        matvizmofTFF90L91lpm100rpmcaseDisplay.DataAxesGrid.YTitleFontFile = ''
        matvizmofTFF90L91lpm100rpmcaseDisplay.DataAxesGrid.ZTitleFontFile = ''
        matvizmofTFF90L91lpm100rpmcaseDisplay.DataAxesGrid.XLabelFontFile = ''
        matvizmofTFF90L91lpm100rpmcaseDisplay.DataAxesGrid.YLabelFontFile = ''
        matvizmofTFF90L91lpm100rpmcaseDisplay.DataAxesGrid.ZLabelFontFile = ''

        # init the 'PolarAxesRepresentation' selected for 'PolarAxes'
        matvizmofTFF90L91lpm100rpmcaseDisplay.PolarAxes.PolarAxisTitleFontFile = ''
        matvizmofTFF90L91lpm100rpmcaseDisplay.PolarAxes.PolarAxisLabelFontFile = ''
        matvizmofTFF90L91lpm100rpmcaseDisplay.PolarAxes.LastRadialAxisTextFontFile = ''
        matvizmofTFF90L91lpm100rpmcaseDisplay.PolarAxes.SecondaryRadialAxesTextFontFile = ''

        # reset view to fit data
        renderView1.ResetCamera()

        # show color bar/color legend
        matvizmofTFF90L91lpm100rpmcaseDisplay.SetScalarBarVisibility(
            renderView1, True)

        # update the view to ensure updated data information
        renderView1.Update()

        # hide data in view
        simple.Hide(matvizmofTFF90L91lpm100rpmcase, renderView1)

        # create a new 'Contour'
        contour1 = simple.Contour(Input=matvizmofTFF90L91lpm100rpmcase)
        contour1.ContourBy = ['POINTS', 'pressure']
        contour1.Isosurfaces = [-3.9317703247070312]
        contour1.PointMergeMethod = 'Uniform Binning'

        # Properties modified on contour1
        contour1.ContourBy = ['POINTS', 'uds_0_scalar']
        contour1.Isosurfaces = [480.0, 570.0]

        # show data in view
        contour1Display = simple.Show(contour1, renderView1)

        # trace defaults for the display properties.
        contour1Display.Representation = 'Surface'
        contour1Display.ColorArrayName = ['POINTS', 'pressure']
        contour1Display.LookupTable = pressureLUT
        contour1Display.OSPRayScaleArray = 'Normals'
        contour1Display.OSPRayScaleFunction = 'PiecewiseFunction'
        contour1Display.SelectOrientationVectors = 'velocity'
        contour1Display.ScaleFactor = 0.07228952534496784
        contour1Display.SelectScaleArray = 'None'
        contour1Display.GlyphType = 'Arrow'
        contour1Display.GlyphTableIndexArray = 'None'
        contour1Display.GaussianRadius = 0.03614476267248392
        contour1Display.SetScaleArray = ['POINTS', 'Normals']
        contour1Display.ScaleTransferFunction = 'PiecewiseFunction'
        contour1Display.OpacityArray = ['POINTS', 'Normals']
        contour1Display.OpacityTransferFunction = 'PiecewiseFunction'
        contour1Display.DataAxesGrid = 'GridAxesRepresentation'
        contour1Display.SelectionCellLabelFontFile = ''
        contour1Display.SelectionPointLabelFontFile = ''
        contour1Display.PolarAxes = 'PolarAxesRepresentation'

        # init the 'PiecewiseFunction' selected for 'ScaleTransferFunction'
        contour1Display.ScaleTransferFunction.Points = [
            -0.9995924830436707, 0.0, 0.5, 0.0, 0.9998393058776855, 1.0, 0.5,
            0.0
        ]

        # init the 'PiecewiseFunction' selected for 'OpacityTransferFunction'
        contour1Display.OpacityTransferFunction.Points = [
            -0.9995924830436707, 0.0, 0.5, 0.0, 0.9998393058776855, 1.0, 0.5,
            0.0
        ]

        # init the 'GridAxesRepresentation' selected for 'DataAxesGrid'
        contour1Display.DataAxesGrid.XTitleFontFile = ''
        contour1Display.DataAxesGrid.YTitleFontFile = ''
        contour1Display.DataAxesGrid.ZTitleFontFile = ''
        contour1Display.DataAxesGrid.XLabelFontFile = ''
        contour1Display.DataAxesGrid.YLabelFontFile = ''
        contour1Display.DataAxesGrid.ZLabelFontFile = ''

        # init the 'PolarAxesRepresentation' selected for 'PolarAxes'
        contour1Display.PolarAxes.PolarAxisTitleFontFile = ''
        contour1Display.PolarAxes.PolarAxisLabelFontFile = ''
        contour1Display.PolarAxes.LastRadialAxisTextFontFile = ''
        contour1Display.PolarAxes.SecondaryRadialAxesTextFontFile = ''

        # reset view to fit data
        renderView1.ResetCamera()

        # hide data in view
        simple.Hide(matvizmofTFF90L91lpm100rpmcase, renderView1)

        # show color bar/color legend
        contour1Display.SetScalarBarVisibility(renderView1, True)

        # update the view to ensure updated data information
        renderView1.Update()

        # set scalar coloring
        simple.ColorBy(contour1Display, ('POINTS', 'velocity_magnitude'))

        # rescale color and/or opacity maps used to include current data range
        contour1Display.RescaleTransferFunctionToDataRange(True, False)

        # show color bar/color legend
        contour1Display.SetScalarBarVisibility(renderView1, True)

        # get color transfer function/color map for 'velocity_magnitude'
        velocity_magnitudeLUT = simple.GetColorTransferFunction(
            'velocity_magnitude')

        #### saving camera placements for all active views

        # current camera placement for renderView1
        renderView1.CameraPosition = [
            1.3051878628081257, -1.32358496378265, -0.017141331493847792
        ]
        renderView1.CameraFocalPoint = [
            -0.052487090229988105, 0.03264869749546056, -0.3026974257081747
        ]
        renderView1.CameraViewUp = [
            -0.5051031518286454, -0.33848038039346323, 0.7939155106820026
        ]
        renderView1.CameraParallelScale = 0.5021485229089222

        #### uncomment the following to render all views
        # RenderAllViews()
        # alternatively, if you want to write images, you can use SaveScreenshot(...).

        ### OLD FOLLOWS

        simple.Render()

        # Update interaction mode
        pxm = simple.servermanager.ProxyManager()
        interactionProxy = pxm.GetProxy('settings',
                                        'RenderViewInteractionSettings')
        print(dir(interactionProxy))

        interactionProxy.Camera3DManipulators = [
            'Rotate', 'Pan', 'Zoom', 'Pan', 'Roll', 'Pan', 'Zoom', 'Rotate',
            'Zoom'
        ]

        print("done with initialize()")
Exemple #13
0
# set scalar coloring
pv.ColorBy(ablnek5000Display, ('POINTS', 'velocity_mag'))

# rescale color and/or opacity maps used to include current data range
ablnek5000Display.RescaleTransferFunctionToDataRange(True, False)

# show color bar/color legend
ablnek5000Display.SetScalarBarVisibility(renderView1, True)

# get color transfer function/color map for 'velocity_mag'
velocity_magLUT = pv.GetColorTransferFunction('velocity_mag')
velocity_magLUT.RGBPoints = [0.0010371223324909806, 0.231373, 0.298039, 0.752941, 0.7069325454649515, 0.865003, 0.865003, 0.865003, 1.412827968597412, 0.705882, 0.0156863, 0.14902]
velocity_magLUT.ScalarRangeInitialized = 1.0

# get opacity transfer function/opacity map for 'velocity_mag'
velocity_magPWF = pv.GetOpacityTransferFunction('velocity_mag')
velocity_magPWF.Points = [0.0010371223324909806, 0.0, 0.5, 0.0, 1.412827968597412, 1.0, 0.5, 0.0]
velocity_magPWF.ScalarRangeInitialized = 1

# Apply a preset using its name. Note this may not work as expected when presets have duplicate names.
velocity_magLUT.ApplyPreset('Inferno (matplotlib)', True)

# get color legend/bar for velocity_magLUT in view renderView1
velocity_magLUTColorBar = pv.GetScalarBar(velocity_magLUT, renderView1)
velocity_magLUTColorBar.Title = 'velocity_mag'
velocity_magLUTColorBar.ComponentTitle = ''

# change scalar bar placement
velocity_magLUTColorBar.WindowLocation = 'AnyLocation'
velocity_magLUTColorBar.Position = [0.9087500000000001, 0.5390781563126252]
velocity_magLUTColorBar.ScalarBarLength = 0.3300000000000002