Exemple #1
0
 def compile(self, compiler):
     """ Writes kernel code to file and compiles it."""
     with open(self.src_file, 'w') as f:
         f.write(self.ccode)
     compiler.compile(self.src_file, self.lib_file, self.log_file)
     logger.info("Compiled %s ==> %s" % (self.name, self.lib_file))
     self._cleanup_files = finalize(self, cleanup_remove_files, self.delete_cfiles, self.src_file, self.lib_file, self.log_file)
Exemple #2
0
def create_parcelsfig_axis(spherical, land=True, projection=None, central_longitude=0):
    try:
        import matplotlib.pyplot as plt
    except:
        logger.info("Visualisation is not possible. Matplotlib not found.")
        return None, None, None, None  # creating axes was not possible

    if projection is not None and not spherical:
        raise RuntimeError('projection not accepted when Field doesn''t have geographic coordinates')

    if spherical:
        try:
            import cartopy
        except:
            logger.info("Visualisation of field with geographic coordinates is not possible. Cartopy not found.")
            return None, None, None, None  # creating axes was not possible

        projection = cartopy.crs.PlateCarree(central_longitude) if projection is None else projection
        fig, ax = plt.subplots(1, 1, subplot_kw={'projection': projection})
        try:  # gridlines not supported for all projections
            gl = ax.gridlines(crs=projection, draw_labels=True)
            gl.xlabels_top, gl.ylabels_right = (False, False)
            gl.xformatter = cartopy.mpl.gridliner.LONGITUDE_FORMATTER
            gl.yformatter = cartopy.mpl.gridliner.LATITUDE_FORMATTER
        except:
            pass

        if land:
            ax.coastlines()
    else:
        cartopy = None
        fig, ax = plt.subplots(1, 1)
        ax.grid()
    return plt, fig, ax, cartopy
Exemple #3
0
 def lib(self, compiler=GNUCompiler()):
     if self._lib is None:
         with open(self.src_file, 'w') as f:
             f.write(self.ccode)
         compiler.compile(self.src_file, self.lib_file, self.log_file)
         logger.info("Compiled %s ==> %s" % ("random", self.lib_file))
         self._lib = npct.load_library(self.lib_file, '.')
     return self._lib
Exemple #4
0
def test_plotting(pset_mode, mode, tmpdir):
    if mode == '3d' and sys.platform in ['linux', 'linux2']:
        logger.info(
            'Skipping 3d test in linux Travis, since it fails to find display to connect'
        )
        return
    fp = create_outputfiles(tmpdir, pset_mode)
    plotTrajectoriesFile(fp, mode=mode, show_plt=False)
Exemple #5
0
    def remove_deleted(self, pset, output_file, endtime):
        """
        Utility to remove all particles that signalled deletion.

        This version is generally applicable to all structures and collections
        """
        # Indices marked for deletion.
        indices = [i for i, p in enumerate(pset) if p.state == OperationCode.Delete]
        if len(indices) > 0:
            logger.info("Deleted {} particles.".format(len(indices)))
        if len(indices) > 0 and output_file is not None:
            output_file.write(pset, endtime, deleted_only=indices)
            pset.remove_indices(indices)
Exemple #6
0
    def write(self, filename):
        """Write FieldSet to NetCDF file using NEMO convention

        :param filename: Basename of the output fileset"""
        logger.info("Generating NEMO FieldSet output with basename: %s" % filename)

        if hasattr(self, 'U'):
            self.U.write(filename, varname='vozocrtx')
        if hasattr(self, 'V'):
            self.V.write(filename, varname='vomecrty')

        for v in self.get_fields():
            if (v.name != 'U') and (v.name != 'V'):
                v.write(filename)
Exemple #7
0
 def compile(self, compiler):
     """ Writes kernel code to file and compiles it."""
     all_files_array = []
     if self.src_file is None:
         for dyn_src in self.dyn_srcs:
             with open(dyn_src, 'w') as f:
                 f.write(self.ccode)
             all_files_array.append(dyn_src)
         compiler.compile(self.dyn_srcs, self.lib_file, self.log_file)
     else:
         with open(self.src_file, 'w') as f:
             f.write(self.ccode)
         all_files_array.append(self.src_file)
         compiler.compile(self.src_file, self.lib_file, self.log_file)
     logger.info("Compiled %s ==> %s" % (self.name, self.lib_file))
     all_files_array.append(self.log_file)
     self._cleanup_files = finalize(self, BaseKernel.cleanup_remove_files, self.lib_file, all_files_array, self.delete_cfiles)
Exemple #8
0
 def compile(self, compiler=None):
     if self.src_file is None or self.lib_file is None or self.log_file is None:
         basename = 'parcels_random_%s' % uuid.uuid4()
         lib_filename = "lib" + basename
         basepath = path.join(get_cache_dir(), "%s" % basename)
         libpath = path.join(get_cache_dir(), "%s" % lib_filename)
         self.src_file = "%s.c" % basepath
         self.lib_file = "%s.so" % libpath
         self.log_file = "%s.log" % basepath
     ccompiler = compiler
     if ccompiler is None:
         cppargs = []
         incdirs = [path.join(get_package_dir(), 'include'), ]
         ccompiler = GNUCompiler(cppargs=cppargs, incdirs=incdirs)
     if self._lib is None:
         with open(self.src_file, 'w+') as f:
             f.write(self.ccode)
         ccompiler.compile(self.src_file, self.lib_file, self.log_file)
         logger.info("Compiled %s ==> %s" % ("ParcelsRandom", self.lib_file))
Exemple #9
0
 def compile(self, compiler):
     """ Writes kernel code to file and compiles it."""
     all_files_array = []
     if self.src_file is None:
         if self.dyn_srcs is not None:
             for dyn_src in self.dyn_srcs:
                 with open(dyn_src, 'w') as f:
                     f.write(self.ccode)
                 all_files_array.append(dyn_src)
             compiler.compile(self.dyn_srcs, self.lib_file, self.log_file)
     else:
         if self.src_file is not None:
             with open(self.src_file, 'w') as f:
                 f.write(self.ccode)
             if self.src_file is not None:
                 all_files_array.append(self.src_file)
             compiler.compile(self.src_file, self.lib_file, self.log_file)
     if len(all_files_array) > 0:
         logger.info("Compiled %s ==> %s" % (self.name, self.lib_file))
         if self.log_file is not None:
             all_files_array.append(self.log_file)
    def execute(self,
                pyfunc=AdvectionRK4,
                endtime=None,
                runtime=None,
                dt=1.,
                moviedt=None,
                recovery=None,
                output_file=None,
                movie_background_field=None,
                verbose_progress=None,
                postIterationCallbacks=None,
                callbackdt=None):
        """Execute a given kernel function over the particle set for
        multiple timesteps. Optionally also provide sub-timestepping
        for particle output.

        :param pyfunc: Kernel function to execute. This can be the name of a
                       defined Python function or a :class:`parcels.kernel.Kernel` object.
                       Kernels can be concatenated using the + operator
        :param endtime: End time for the timestepping loop.
                        It is either a datetime object or a positive double.
        :param runtime: Length of the timestepping loop. Use instead of endtime.
                        It is either a timedelta object or a positive double.
        :param dt: Timestep interval to be passed to the kernel.
                   It is either a timedelta object or a double.
                   Use a negative value for a backward-in-time simulation.
        :param moviedt:  Interval for inner sub-timestepping (leap), which dictates
                         the update frequency of animation.
                         It is either a timedelta object or a positive double.
                         None value means no animation.
        :param output_file: :mod:`parcels.particlefile.ParticleFile` object for particle output
        :param recovery: Dictionary with additional `:mod:parcels.tools.error`
                         recovery kernels to allow custom recovery behaviour in case of
                         kernel errors.
        :param movie_background_field: field plotted as background in the movie if moviedt is set.
                                       'vector' shows the velocity as a vector field.
        :param verbose_progress: Boolean for providing a progress bar for the kernel execution loop.
        :param postIterationCallbacks: (Optional) Array of functions that are to be called after each iteration (post-process, non-Kernel)
        :param callbackdt: (Optional, in conjecture with 'postIterationCallbacks) timestep inverval to (latestly) interrupt the running kernel and invoke post-iteration callbacks from 'postIterationCallbacks'
        """

        # check if pyfunc has changed since last compile. If so, recompile
        if self.kernel is None or (self.kernel.pyfunc is not pyfunc
                                   and self.kernel is not pyfunc):
            # Generate and store Kernel
            if isinstance(pyfunc, Kernel):
                self.kernel = pyfunc
            else:
                self.kernel = self.Kernel(pyfunc)
            # Prepare JIT kernel execution
            if self.ptype.uses_jit:
                self.kernel.remove_lib()
                cppargs = ['-DDOUBLE_COORD_VARIABLES'
                           ] if self.lonlatdepth_dtype == np.float64 else None
                self.kernel.compile(compiler=GNUCompiler(cppargs=cppargs))
                self.kernel.load_lib()

        # Convert all time variables to seconds
        if isinstance(endtime, delta):
            raise RuntimeError('endtime must be either a datetime or a double')
        if isinstance(endtime, datetime):
            endtime = np.datetime64(endtime)
        if isinstance(endtime, np.datetime64):
            if self.time_origin.calendar is None:
                raise NotImplementedError(
                    'If fieldset.time_origin is not a date, execution endtime must be a double'
                )
            endtime = self.time_origin.reltime(endtime)
        if isinstance(runtime, delta):
            runtime = runtime.total_seconds()
        if isinstance(dt, delta):
            dt = dt.total_seconds()
        outputdt = output_file.outputdt if output_file else np.infty
        if isinstance(outputdt, delta):
            outputdt = outputdt.total_seconds()
        if isinstance(moviedt, delta):
            moviedt = moviedt.total_seconds()
        if isinstance(callbackdt, delta):
            callbackdt = callbackdt.total_seconds()

        assert runtime is None or runtime >= 0, 'runtime must be positive'
        assert outputdt is None or outputdt >= 0, 'outputdt must be positive'
        assert moviedt is None or moviedt >= 0, 'moviedt must be positive'

        mintime, maxtime = self.fieldset.gridset.dimrange(
            'time_full') if self.fieldset is not None else (0, 1)
        if np.any(np.isnan(self.particle_data['time'])):
            self.particle_data['time'][np.isnan(
                self.particle_data['time'])] = mintime if dt >= 0 else maxtime

        # Derive _starttime and endtime from arguments or fieldset defaults
        if runtime is not None and endtime is not None:
            raise RuntimeError(
                'Only one of (endtime, runtime) can be specified')
        _starttime = self.particle_data['time'].min(
        ) if dt >= 0 else self.particle_data['time'].max()
        if self.repeatdt is not None and self.repeat_starttime is None:
            self.repeat_starttime = _starttime
        if runtime is not None:
            endtime = _starttime + runtime * np.sign(dt)
        elif endtime is None:
            mintime, maxtime = self.fieldset.gridset.dimrange('time_full')
            endtime = maxtime if dt >= 0 else mintime

        execute_once = False
        if abs(endtime - _starttime) < 1e-5 or dt == 0 or runtime == 0:
            dt = 0
            runtime = 0
            endtime = _starttime
            logger.warning_once(
                "dt or runtime are zero, or endtime is equal to Particle.time. "
                "The kernels will be executed once, without incrementing time")
            execute_once = True

        self.particle_data['dt'][:] = dt

        # First write output_file, because particles could have been added
        if output_file:
            output_file.write(self, _starttime)
        if moviedt:
            self.show(field=movie_background_field,
                      show_time=_starttime,
                      animation=True)

        if moviedt is None:
            moviedt = np.infty
        if callbackdt is None:
            interupt_dts = [np.infty, moviedt, outputdt]
            if self.repeatdt is not None:
                interupt_dts.append(self.repeatdt)
            callbackdt = np.min(np.array(interupt_dts))
        time = _starttime
        if self.repeatdt:
            next_prelease = self.repeat_starttime + (
                abs(time - self.repeat_starttime) // self.repeatdt +
                1) * self.repeatdt * np.sign(dt)
        else:
            next_prelease = np.infty if dt > 0 else -np.infty
        next_output = time + outputdt if dt > 0 else time - outputdt
        next_movie = time + moviedt if dt > 0 else time - moviedt
        next_callback = time + callbackdt if dt > 0 else time - callbackdt
        next_input = self.fieldset.computeTimeChunk(
            time, np.sign(dt)) if self.fieldset is not None else np.inf

        tol = 1e-12
        if verbose_progress is None:
            walltime_start = time_module.time()
        if verbose_progress:
            pbar = self.__create_progressbar(_starttime, endtime)
        while (time < endtime and dt > 0) or (time > endtime
                                              and dt < 0) or dt == 0:
            if verbose_progress is None and time_module.time(
            ) - walltime_start > 10:
                # Showing progressbar if runtime > 10 seconds
                if output_file:
                    logger.info('Temporary output files are stored in %s.' %
                                output_file.tempwritedir_base)
                    logger.info(
                        'You can use "parcels_convert_npydir_to_netcdf %s" to convert these '
                        'to a NetCDF file during the run.' %
                        output_file.tempwritedir_base)
                pbar = self.__create_progressbar(_starttime, endtime)
                verbose_progress = True
            if dt > 0:
                time = min(next_prelease, next_input, next_output, next_movie,
                           next_callback, endtime)
            else:
                time = max(next_prelease, next_input, next_output, next_movie,
                           next_callback, endtime)
            self.kernel.execute(self,
                                endtime=time,
                                dt=dt,
                                recovery=recovery,
                                output_file=output_file,
                                execute_once=execute_once)
            if abs(time - next_prelease) < tol:
                pset_new = ParticleSet(
                    fieldset=self.fieldset,
                    time=time,
                    lon=self.repeatlon,
                    lat=self.repeatlat,
                    depth=self.repeatdepth,
                    pclass=self.repeatpclass,
                    lonlatdepth_dtype=self.lonlatdepth_dtype,
                    partitions=False,
                    pid_orig=self.repeatpid,
                    **self.repeatkwargs)
                p = pset_new.data_accessor()
                for i in range(pset_new.size):
                    p.set_index(i)
                    p.dt = dt
                self.add(pset_new)
                next_prelease += self.repeatdt * np.sign(dt)
            if abs(time - next_output) < tol:
                if output_file:
                    output_file.write(self, time)
                next_output += outputdt * np.sign(dt)
            if abs(time - next_movie) < tol:
                self.show(field=movie_background_field,
                          show_time=time,
                          animation=True)
                next_movie += moviedt * np.sign(dt)
            # ==== insert post-process here to also allow for memory clean-up via external func ==== #
            if abs(time - next_callback) < tol:
                if postIterationCallbacks is not None:
                    for extFunc in postIterationCallbacks:
                        extFunc()
                next_callback += callbackdt * np.sign(dt)
            if time != endtime:
                next_input = self.fieldset.computeTimeChunk(time, dt)
            if dt == 0:
                break
            if verbose_progress:
                pbar.update(abs(time - _starttime))

        if output_file:
            output_file.write(self, time)
        if verbose_progress:
            pbar.finish()
Exemple #11
0
def plotfield(field, show_time=None, domain=None, depth_level=0, projection=None, land=True,
              vmin=None, vmax=None, savefile=None, **kwargs):
    """Function to plot a Parcels Field

    :param show_time: Time at which to show the Field
    :param domain: Four-vector (latN, latS, lonE, lonW) defining domain to show
    :param depth_level: depth level to be plotted (default 0)
    :param projection: type of cartopy projection to use (default PlateCarree)
    :param land: Boolean whether to show land. This is ignored for flat meshes
    :param vmin: minimum colour scale (only in single-plot mode)
    :param vmax: maximum colour scale (only in single-plot mode)
    :param savefile: Name of a file to save the plot to
    :param animation: Boolean whether result is a single plot, or an animation
    """

    if type(field) is VectorField:
        spherical = True if field.U.grid.mesh == 'spherical' else False
        field = [field.U, field.V]
        plottype = 'vector'
    elif type(field) is Field:
        spherical = True if field.grid.mesh == 'spherical' else False
        field = [field]
        plottype = 'scalar'
    else:
        raise RuntimeError('field needs to be a Field or VectorField object')

    plt, fig, ax, cartopy = create_parcelsfig_axis(spherical, land, projection=projection)
    if plt is None:
        return None, None, None, None  # creating axes was not possible

    data = {}
    plotlon = {}
    plotlat = {}
    for i, fld in enumerate(field):
        show_time = fld.grid.time[0] if show_time is None else show_time
        if fld.grid.defer_load:
            fld.fieldset.computeTimeChunk(show_time, 1)
        (idx, periods) = fld.time_index(show_time)
        show_time -= periods * (fld.grid.time[-1] - fld.grid.time[0])
        if show_time > fld.grid.time[-1] or show_time < fld.grid.time[0]:
            raise TimeExtrapolationError(show_time, field=fld, msg='show_time')

        latN, latS, lonE, lonW = parsedomain(domain, fld)
        if isinstance(fld.grid, CurvilinearGrid):
            plotlon[i] = fld.grid.lon[latS:latN, lonW:lonE]
            plotlat[i] = fld.grid.lat[latS:latN, lonW:lonE]
        else:
            plotlon[i] = fld.grid.lon[lonW:lonE]
            plotlat[i] = fld.grid.lat[latS:latN]
        if i > 0 and not np.allclose(plotlon[i], plotlon[0]):
            raise RuntimeError('VectorField needs to be on an A-grid for plotting')
        if fld.grid.time.size > 1:
            if fld.grid.zdim > 1:
                data[i] = np.squeeze(fld.temporal_interpolate_fullfield(idx, show_time))[depth_level, latS:latN, lonW:lonE]
            else:
                data[i] = np.squeeze(fld.temporal_interpolate_fullfield(idx, show_time))[latS:latN, lonW:lonE]
        else:
            if fld.grid.zdim > 1:
                data[i] = np.squeeze(fld.data)[depth_level, latS:latN, lonW:lonE]
            else:
                data[i] = np.squeeze(fld.data)[latS:latN, lonW:lonE]

    if plottype is 'vector':
        spd = data[0] ** 2 + data[1] ** 2
        speed = np.sqrt(spd, where=spd > 0)
        vmin = speed.min() if vmin is None else vmin
        vmax = speed.max() if vmax is None else vmax
        if isinstance(field[0].grid, CurvilinearGrid):
            x, y = plotlon[0], plotlat[0]
        else:
            x, y = np.meshgrid(plotlon[0], plotlat[0])
        nonzerospd = speed != 0
        u, v = (np.zeros_like(data[0]) * np.nan, np.zeros_like(data[1]) * np.nan)
        np.place(u, nonzerospd, data[0][nonzerospd] / speed[nonzerospd])
        np.place(v, nonzerospd, data[1][nonzerospd] / speed[nonzerospd])
        if cartopy:
            cs = ax.quiver(x, y, u, v, speed, cmap=plt.cm.gist_ncar, clim=[vmin, vmax], scale=50, transform=cartopy.crs.PlateCarree())
        else:
            cs = ax.quiver(x, y, u, v, speed, cmap=plt.cm.gist_ncar, clim=[vmin, vmax], scale=50)
    else:
        vmin = data[0].min() if vmin is None else vmin
        vmax = data[0].max() if vmax is None else vmax
        if cartopy:
            cs = ax.pcolormesh(plotlon[0], plotlat[0], data[0], transform=cartopy.crs.PlateCarree())
        else:
            cs = ax.pcolormesh(plotlon[0], plotlat[0], data[0])

    if cartopy is None or projection is None:
        ax.set_xlim(np.nanmin(plotlon[0]), np.nanmax(plotlon[0]))
        ax.set_ylim(np.nanmin(plotlat[0]), np.nanmax(plotlat[0]))
    elif domain is not None:
        ax.set_extent([np.nanmin(plotlon[0]), np.nanmax(plotlon[0]), np.nanmin(plotlat[0]), np.nanmax(plotlat[0])])
    cs.cmap.set_over('k')
    cs.cmap.set_under('w')
    cs.set_clim(vmin, vmax)

    cartopy_colorbar(cs, plt, fig, ax)

    timestr = parsetimestr(field[0].grid.time_origin, show_time)
    titlestr = kwargs.pop('titlestr', '')
    if field[0].grid.zdim > 1:
        if field[0].grid.gtype in [GridCode.CurvilinearZGrid, GridCode.RectilinearZGrid]:
            gphrase = 'depth'
            depth_or_level = field[0].grid.depth[depth_level]
        else:
            gphrase = 'level'
            depth_or_level = depth_level
        depthstr = ' at %s %g ' % (gphrase, depth_or_level)
    else:
        depthstr = ''
    if plottype is 'vector':
        ax.set_title(titlestr + 'Velocity field' + depthstr + timestr)
    else:
        ax.set_title(titlestr + field[0].name + depthstr + timestr)

    if not spherical:
        ax.set_xlabel('Zonal distance [m]')
        ax.set_ylabel('Meridional distance [m]')

    plt.draw()

    if savefile:
        plt.savefig(savefile)
        logger.info('Plot saved to ' + savefile + '.png')
        plt.close()

    return plt, fig, ax, cartopy
Exemple #12
0
def plotparticles(particles, with_particles=True, show_time=None, field=None, domain=None, projection=None,
                  land=True, vmin=None, vmax=None, savefile=None, animation=False):
    """Function to plot a Parcels ParticleSet

    :param show_time: Time at which to show the ParticleSet
    :param with_particles: Boolean whether particles are also plotted on Field
    :param field: Field to plot under particles (either None, a Field object, or 'vector')
    :param domain: Four-vector (latN, latS, lonE, lonW) defining domain to show
    :param projection: type of cartopy projection to use (default PlateCarree)
    :param land: Boolean whether to show land. This is ignored for flat meshes
    :param vmin: minimum colour scale (only in single-plot mode)
    :param vmax: maximum colour scale (only in single-plot mode)
    :param savefile: Name of a file to save the plot to
    :param animation: Boolean whether result is a single plot, or an animation
    """

    show_time = particles[0].time if show_time is None else show_time
    if isinstance(show_time, datetime):
        show_time = np.datetime64(show_time)
    if isinstance(show_time, np.datetime64):
        if not particles.time_origin:
            raise NotImplementedError(
                'If fieldset.time_origin is not a date, showtime cannot be a date in particleset.show()')
        show_time = particles.time_origin.reltime(show_time)
    if isinstance(show_time, delta):
        show_time = show_time.total_seconds()
    if np.isnan(show_time):
        show_time, _ = particles.fieldset.gridset.dimrange('time_full')

    if field is None:
        spherical = True if particles.fieldset.U.grid.mesh == 'spherical' else False
        plt, fig, ax, cartopy = create_parcelsfig_axis(spherical, land, projection)
        if plt is None:
            return  # creating axes was not possible
        ax.set_title('Particles' + parsetimestr(particles.fieldset.U.grid.time_origin, show_time))
        latN, latS, lonE, lonW = parsedomain(domain, particles.fieldset.U)
        if cartopy is None or projection is None:
            if domain is not None:
                if isinstance(particles.fieldset.U.grid, CurvilinearGrid):
                    ax.set_xlim(particles.fieldset.U.grid.lon[latS, lonW], particles.fieldset.U.grid.lon[latN, lonE])
                    ax.set_ylim(particles.fieldset.U.grid.lat[latS, lonW], particles.fieldset.U.grid.lat[latN, lonE])
                else:
                    ax.set_xlim(particles.fieldset.U.grid.lon[lonW], particles.fieldset.U.grid.lon[lonE])
                    ax.set_ylim(particles.fieldset.U.grid.lat[latS], particles.fieldset.U.grid.lat[latN])
            else:
                ax.set_xlim(np.nanmin(particles.fieldset.U.grid.lon), np.nanmax(particles.fieldset.U.grid.lon))
                ax.set_ylim(np.nanmin(particles.fieldset.U.grid.lat), np.nanmax(particles.fieldset.U.grid.lat))
        elif domain is not None:
            if isinstance(particles.fieldset.U.grid, CurvilinearGrid):
                ax.set_extent([particles.fieldset.U.grid.lon[latS, lonW], particles.fieldset.U.grid.lon[latN, lonE],
                               particles.fieldset.U.grid.lat[latS, lonW], particles.fieldset.U.grid.lat[latN, lonE]])
            else:
                ax.set_extent([particles.fieldset.U.grid.lon[lonW], particles.fieldset.U.grid.lon[lonE],
                               particles.fieldset.U.grid.lat[latS], particles.fieldset.U.grid.lat[latN]])

    else:
        if field is 'vector':
            field = particles.fieldset.UV
        elif not isinstance(field, Field):
            field = getattr(particles.fieldset, field)

        plt, fig, ax, cartopy = plotfield(field=field, animation=animation, show_time=show_time, domain=domain,
                                          projection=projection, land=land, vmin=vmin, vmax=vmax, savefile=None,
                                          titlestr='Particles and ')
        if plt is None:
            return  # creating axes was not possible

    if with_particles:
        plon = np.array([p.lon for p in particles])
        plat = np.array([p.lat for p in particles])
        if cartopy:
            ax.scatter(plon, plat, s=20, color='black', zorder=20, transform=cartopy.crs.PlateCarree())
        else:
            ax.scatter(plon, plat, s=20, color='black', zorder=20)

    if animation:
        plt.draw()
        plt.pause(0.0001)
    elif savefile is None:
        plt.show()
    else:
        plt.savefig(savefile)
        logger.info('Plot saved to ' + savefile + '.png')
        plt.close()
Exemple #13
0
def plotfield(field,
              show_time=None,
              domain=None,
              depth_level=0,
              projection=None,
              land=True,
              vmin=None,
              vmax=None,
              savefile=None,
              **kwargs):
    """Function to plot a Parcels Field

    :param show_time: Time at which to show the Field
    :param domain: dictionary (with keys 'N', 'S', 'E', 'W') defining domain to show
    :param depth_level: depth level to be plotted (default 0)
    :param projection: type of cartopy projection to use (default PlateCarree)
    :param land: Boolean whether to show land. This is ignored for flat meshes
    :param vmin: minimum colour scale (only in single-plot mode)
    :param vmax: maximum colour scale (only in single-plot mode)
    :param savefile: Name of a file to save the plot to
    :param animation: Boolean whether result is a single plot, or an animation
    """

    if type(field) is VectorField:
        spherical = True if field.U.grid.mesh == 'spherical' else False
        field = [field.U, field.V]
        plottype = 'vector'
    elif type(field) is Field:
        spherical = True if field.grid.mesh == 'spherical' else False
        field = [field]
        plottype = 'scalar'
    else:
        raise RuntimeError('field needs to be a Field or VectorField object')

    if field[0].grid.gtype in [
            GridCode.CurvilinearZGrid, GridCode.CurvilinearSGrid
    ]:
        logger.warning(
            'Field.show() does not always correctly determine the domain for curvilinear grids. '
            'Use plotting with caution and perhaps use domain argument as in the NEMO 3D tutorial'
        )

    plt, fig, ax, cartopy = create_parcelsfig_axis(spherical,
                                                   land,
                                                   projection=projection)
    if plt is None:
        return None, None, None, None  # creating axes was not possible

    data = {}
    plotlon = {}
    plotlat = {}
    for i, fld in enumerate(field):
        show_time = fld.grid.time[0] if show_time is None else show_time
        if fld.grid.defer_load:
            fld.fieldset.computeTimeChunk(show_time, 1)
        (idx, periods) = fld.time_index(show_time)
        show_time -= periods * (fld.grid.time_full[-1] - fld.grid.time_full[0])
        if show_time > fld.grid.time[-1] or show_time < fld.grid.time[0]:
            raise TimeExtrapolationError(show_time, field=fld, msg='show_time')

        latN, latS, lonE, lonW = parsedomain(domain, fld)
        if isinstance(fld.grid, CurvilinearGrid):
            plotlon[i] = fld.grid.lon[latS:latN, lonW:lonE]
            plotlat[i] = fld.grid.lat[latS:latN, lonW:lonE]
        else:
            plotlon[i] = fld.grid.lon[lonW:lonE]
            plotlat[i] = fld.grid.lat[latS:latN]
        if i > 0 and not np.allclose(plotlon[i], plotlon[0]):
            raise RuntimeError(
                'VectorField needs to be on an A-grid for plotting')
        if fld.grid.time.size > 1:
            if fld.grid.zdim > 1:
                data[i] = np.squeeze(
                    fld.temporal_interpolate_fullfield(idx,
                                                       show_time))[depth_level,
                                                                   latS:latN,
                                                                   lonW:lonE]
            else:
                data[i] = np.squeeze(
                    fld.temporal_interpolate_fullfield(idx,
                                                       show_time))[latS:latN,
                                                                   lonW:lonE]
        else:
            if fld.grid.zdim > 1:
                data[i] = np.squeeze(fld.data)[depth_level, latS:latN,
                                               lonW:lonE]
            else:
                data[i] = np.squeeze(fld.data)[latS:latN, lonW:lonE]

    if plottype == 'vector':
        if field[0].interp_method == 'cgrid_velocity':
            logger.warning_once(
                'Plotting a C-grid velocity field is achieved via an A-grid projection, reducing the plot accuracy'
            )
            d = np.empty_like(data[0])
            d[:-1, :] = (data[0][:-1, :] + data[0][1:, :]) / 2.
            d[-1, :] = data[0][-1, :]
            data[0] = d
            d = np.empty_like(data[0])
            d[:, :-1] = (data[0][:, :-1] + data[0][:, 1:]) / 2.
            d[:, -1] = data[0][:, -1]
            data[1] = d

        spd = data[0]**2 + data[1]**2
        speed = np.where(spd > 0, np.sqrt(spd), 0)
        vmin = speed.min() if vmin is None else vmin
        vmax = speed.max() if vmax is None else vmax
        if isinstance(field[0].grid, CurvilinearGrid):
            x, y = plotlon[0], plotlat[0]
        else:
            x, y = np.meshgrid(plotlon[0], plotlat[0])
        u = np.where(speed > 0., data[0] / speed, 0)
        v = np.where(speed > 0., data[1] / speed, 0)
        if cartopy:
            cs = ax.quiver(np.asarray(x),
                           np.asarray(y),
                           np.asarray(u),
                           np.asarray(v),
                           speed,
                           cmap=plt.cm.gist_ncar,
                           clim=[vmin, vmax],
                           scale=50,
                           transform=cartopy.crs.PlateCarree())
        else:
            cs = ax.quiver(x,
                           y,
                           u,
                           v,
                           speed,
                           cmap=plt.cm.gist_ncar,
                           clim=[vmin, vmax],
                           scale=50)
    else:
        vmin = data[0].min() if vmin is None else vmin
        vmax = data[0].max() if vmax is None else vmax
        assert len(data[0].shape) == 2
        if field[0].interp_method == 'cgrid_tracer':
            d = data[0][1:, 1:]
        elif field[0].interp_method == 'cgrid_velocity':
            if field[0].fieldtype == 'U':
                d = np.empty_like(data[0])
                d[:-1, :-1] = (data[0][1:, :-1] + data[0][1:, 1:]) / 2.
            elif field[0].fieldtype == 'V':
                d = np.empty_like(data[0])
                d[:-1, :-1] = (data[0][:-1, 1:] + data[0][1:, 1:]) / 2.
            else:  # W
                d = data[0][1:, 1:]
        else:  # if A-grid
            d = (data[0][:-1, :-1] + data[0][1:, :-1] + data[0][:-1, 1:] +
                 data[0][1:, 1:]) / 4.
            d = np.where(data[0][:-1, :-1] == 0, 0, d)
            d = np.where(data[0][1:, :-1] == 0, 0, d)
            d = np.where(data[0][1:, 1:] == 0, 0, d)
            d = np.where(data[0][:-1, 1:] == 0, 0, d)
        if cartopy:
            cs = ax.pcolormesh(plotlon[0],
                               plotlat[0],
                               d,
                               transform=cartopy.crs.PlateCarree())
        else:
            cs = ax.pcolormesh(plotlon[0], plotlat[0], d)

    if cartopy is None:
        ax.set_xlim(np.nanmin(plotlon[0]), np.nanmax(plotlon[0]))
        ax.set_ylim(np.nanmin(plotlat[0]), np.nanmax(plotlat[0]))
    elif domain is not None:
        ax.set_extent([
            np.nanmin(plotlon[0]),
            np.nanmax(plotlon[0]),
            np.nanmin(plotlat[0]),
            np.nanmax(plotlat[0])
        ],
                      crs=cartopy.crs.PlateCarree())
    cs.cmap.set_over('k')
    cs.cmap.set_under('w')
    cs.set_clim(vmin, vmax)

    cartopy_colorbar(cs, plt, fig, ax)

    timestr = parsetimestr(field[0].grid.time_origin, show_time)
    titlestr = kwargs.pop('titlestr', '')
    if field[0].grid.zdim > 1:
        if field[0].grid.gtype in [
                GridCode.CurvilinearZGrid, GridCode.RectilinearZGrid
        ]:
            gphrase = 'depth'
            depth_or_level = field[0].grid.depth[depth_level]
        else:
            gphrase = 'level'
            depth_or_level = depth_level
        depthstr = ' at %s %g ' % (gphrase, depth_or_level)
    else:
        depthstr = ''
    if plottype == 'vector':
        ax.set_title(titlestr + 'Velocity field' + depthstr + timestr)
    else:
        ax.set_title(titlestr + field[0].name + depthstr + timestr)

    if not spherical:
        ax.set_xlabel('Zonal distance [m]')
        ax.set_ylabel('Meridional distance [m]')

    plt.draw()

    if savefile:
        plt.savefig(savefile)
        logger.info('Plot saved to ' + savefile + '.png')
        plt.close()

    return plt, fig, ax, cartopy
Exemple #14
0
 def compile(self, compiler):
     """ Writes kernel code to file and compiles it."""
     with open(self.src_file, 'w') as f:
         f.write(self.ccode)
     compiler.compile(self.src_file, self.lib_file, self.log_file)
     logger.info("Compiled %s ==> %s" % (self.name, self.lib_file))