Exemple #1
0
def run_ba_cov_neutral_sims(shape=1,
                            scale=1,
                            G=50,
                            N=50,
                            iter1=1000,
                            iter2=1000):
    df_out = open(pt.get_path() + '/data/simulations/ba_cov_neutral_sims.txt',
                  'w')
    df_out.write('\t'.join([
        'N', 'G', 'lamba_mean', 'lambda_neutral', 'Cov', 'Iteration',
        'dist_percent'
    ]) + '\n')
    covs = [0.2]
    mean_gamma = shape * scale
    neutral_range = np.logspace(-2, 1, num=20, endpoint=True, base=10.0)
    neutral_range = neutral_range[::-1]
    for neutral_ in neutral_range:
        for cov in covs:
            for i in range(iter1):
                C = pt.get_ba_cov_matrix(G, cov)
                lambda_genes = np.random.gamma(shape=shape,
                                               scale=scale,
                                               size=G)
                lambda_genes_null = np.asarray([neutral_] * G)
                test_cov_adapt = np.stack(
                    [pt.get_count_pop(lambda_genes, C=C) for x in range(N)],
                    axis=0)
                # matrix with diaganol values equal to one
                test_cov_neutral = np.stack([
                    pt.get_count_pop(lambda_genes_null, C=np.identity(G))
                    for x in range(N)
                ],
                                            axis=0)
                test_cov = test_cov_adapt + test_cov_neutral

                X = pt.hellinger_transform(test_cov)
                pca = PCA()
                pca_fit = pca.fit_transform(X)
                euc_dist = pt.get_mean_pairwise_euc_distance(pca_fit)
                euc_dists = []
                for j in range(iter2):
                    #X_j = pt.hellinger_transform(pt.random_matrix(test_cov))
                    X_j = pt.hellinger_transform(
                        pt.get_random_matrix(test_cov))
                    pca_fit_j = pca.fit_transform(X_j)
                    euc_dists.append(
                        pt.get_mean_pairwise_euc_distance(pca_fit_j))
                euc_percent = len([k for k in euc_dists if k < euc_dist
                                   ]) / len(euc_dists)
                print(neutral_, cov, i, euc_percent)
                df_out.write('\t'.join([
                    str(N),
                    str(G),
                    str(mean_gamma),
                    str(neutral_),
                    str(cov),
                    str(i),
                    str(euc_percent)
                ]) + '\n')
    df_out.close()
def run_cov_neutral_sims(out_name,
                         covs=[0.1, 0.15, 0.2],
                         shape=1,
                         scale=1,
                         G=50,
                         N=50,
                         iter1=1000,
                         iter2=1000):
    df_out = open(out_name, 'w')
    df_out.write('\t'.join([
        'N', 'G', 'lamba_mean', 'lambda_neutral', 'Cov', 'Iteration',
        'dist_percent', 'z_score'
    ]) + '\n')
    mean_gamma = shape * scale
    neutral_range = np.logspace(-2, 1, num=20, endpoint=True, base=10.0)
    neutral_range = neutral_range[::-1]
    for neutral_ in neutral_range:
        for cov in covs:
            for i in range(iter1):
                C = pt.get_ba_cov_matrix(G, cov)
                while True:
                    lambda_genes = np.random.gamma(shape=shape,
                                                   scale=scale,
                                                   size=G)
                    lambda_genes_null = np.asarray([neutral_] * G)
                    test_cov_adapt = np.stack([
                        pt.get_count_pop(lambda_genes, C=C) for x in range(N)
                    ],
                                              axis=0)
                    # matrix with diaganol values equal to one
                    test_cov_neutral = np.stack([
                        pt.get_count_pop(lambda_genes_null, C=np.identity(G))
                        for x in range(N)
                    ],
                                                axis=0)
                    test_cov = test_cov_adapt + test_cov_neutral
                    if (np.any(test_cov.sum(axis=1) == 0)) == False:
                        break
                # check and remove empty columns
                test_cov = test_cov[:, ~np.all(test_cov == 0, axis=0)]
                euc_percent, z_score = pt.matrix_vs_null_one_treat(
                    test_cov, iter2)
                df_out.write('\t'.join([
                    str(N),
                    str(G),
                    str(mean_gamma),
                    str(neutral_),
                    str(cov),
                    str(i),
                    str(euc_percent),
                    str(z_score)
                ]) + '\n')
            print(neutral_, cov)
    df_out.close()
Exemple #3
0
def run_ba_cov_sims(gene_list, pop_list, out_name, iter1=1000, iter2=1000):
    df_out = open(pt.get_path() + '/data/simulations/' + out_name + '.txt',
                  'w')
    df_out.write('\t'.join(['N', 'G', 'Cov', 'Iteration', 'dist_percent']) +
                 '\n')
    covs = [0.1, 0.15, 0.2]
    for G in gene_list:
        for N in pop_list:
            for cov in covs:
                for i in range(iter1):
                    C = pt.get_ba_cov_matrix(G, cov)
                    while True:
                        lambda_genes = np.random.gamma(shape=1,
                                                       scale=1,
                                                       size=G)
                        test_cov = np.stack([
                            pt.get_count_pop(lambda_genes, cov=C)
                            for x in range(N)
                        ],
                                            axis=0)
                        #test_cov_row_sum = test_cov.sum(axis=1)
                        if (np.any(test_cov.sum(axis=1) == 0)) == False:
                            break
                        #if np.count_nonzero(test_cov_row_sum) == len(test_cov_row_sum):
                        #    break
                    X = pt.hellinger_transform(test_cov)
                    pca = PCA()
                    pca_fit = pca.fit_transform(X)
                    euc_dist = pt.get_mean_pairwise_euc_distance(pca_fit)
                    euc_dists = []
                    for j in range(iter2):
                        X_j = pt.hellinger_transform(
                            pt.get_random_matrix(test_cov))
                        #X_j = pt.hellinger_transform(pt.random_matrix(test_cov))
                        pca_fit_j = pca.fit_transform(X_j)
                        euc_dists.append(
                            pt.get_mean_pairwise_euc_distance(pca_fit_j))
                    euc_percent = len([k for k in euc_dists if k < euc_dist
                                       ]) / len(euc_dists)
                    print(N, G, cov, i, euc_percent)
                    df_out.write('\t'.join(
                        [str(N),
                         str(G),
                         str(cov),
                         str(i),
                         str(euc_percent)]) + '\n')
    df_out.close()
def run_cov_rho_sims(out_name,
                     covs=[0.1, 0.15, 0.2],
                     rhos=[-0.2, 0, 0.2],
                     shape=1,
                     scale=1,
                     G=50,
                     N=50,
                     iter1=10,
                     iter2=1000):
    df_out = open(out_name, 'w')
    df_out.write('\t'.join([
        'N', 'G', 'Cov', 'Rho_goal', 'Rho_estimated', 'Iteration',
        'dist_percent', 'z_score'
    ]) + '\n')
    for cov in covs:
        for rho in rhos:
            for i in range(iter1):
                C, rho_estimated = pt.get_ba_cov_matrix(n_genes=G,
                                                        cov=cov,
                                                        rho=rho)
                while True:
                    lambda_genes = np.random.gamma(shape=1, scale=1, size=G)
                    test_cov = np.stack([
                        pt.get_count_pop(lambda_genes, C=C) for x in range(N)
                    ],
                                        axis=0)
                    if (np.any(test_cov.sum(axis=1) == 0)) == False:
                        break
                # check and remove empty columns
                test_cov = test_cov[:, ~np.all(test_cov == 0, axis=0)]
                euc_percent, z_score = pt.matrix_vs_null_one_treat(
                    test_cov, iter2)
                df_out.write('\t'.join([
                    str(N),
                    str(G),
                    str(cov),
                    str(rho),
                    str(rho_estimated),
                    str(i),
                    str(euc_percent),
                    str(z_score)
                ]) + '\n')
                print(N, G, cov, rho, rho_estimated, i)
    df_out.close()
def run_cov_dist_sims_unequal(out_name,
                              to_reshuffle=[5],
                              N1=20,
                              N2=20,
                              covs_12=[0.05],
                              G=100,
                              shape=1,
                              scale=1,
                              iter1=10,
                              iter2=1000):
    df_out = open(out_name, 'w')
    df_out.write('\t'.join([
        'N1', 'N2', 'G', 'Reshuf', 'Cov', 'Iteration', 'Euc_dist',
        'F_2_percent', 'F_2_z_score', 'V_1_percent', 'V_1_z_score',
        'V_2_percent', 'V_2_z_score'
    ]) + '\n')

    # re write code for covariance matrix to get
    for reshuf in to_reshuffle:
        for cov in covs:
            reshuf_list = []
            for i in range(iter1):
                C = pt.get_ba_cov_matrix(G, cov)
                while True:
                    rates = np.random.gamma(shape, scale=scale, size=G)
                    rates1 = rates.copy()
                    rates2 = rates.copy()
                    # fix this so you're not resampling the same pairs
                    for j in range(reshuf)[0::2]:
                        rates2[j], rates2[j + 1] = rates2[j + 1], rates2[j]
                    #shuffle(rates)#[:reshuf])
                    counts1 = np.stack(
                        [pt.get_count_pop(rates1, C=C) for x in range(N1)],
                        axis=0)
                    counts2 = np.stack(
                        [pt.get_count_pop(rates2, C=C) for x in range(N2)],
                        axis=0)
                    if (np.any(counts1.sum(axis=1) == 0) == False) or (np.any(
                            counts2.sum(axis=1) == 0) == False):
                        break
                euc_dist = np.linalg.norm(rates1 - rates2)
                count_matrix = np.concatenate((counts1, counts2), axis=0)
                # check and remove empty columns
                count_matrix = count_matrix[:,
                                            ~np.all(count_matrix == 0, axis=0)]
                F_2_percent, F_2_z_score, \
                    V_1_percent, V_1_z_score, \
                    V_2_percent, V_2_z_score = \
                    pt.matrix_vs_null_two_treats(count_matrix,  N1, N2, iter=iter2)
                reshuf_list.append(euc_dist)
                print(reshuf, cov, i, F_2_percent, F_2_z_score, euc_dist,
                      V_1_percent, V_2_percent)
                df_out.write('\t'.join([
                    str(N1),
                    str(N2),
                    str(G),
                    str(reshuf),
                    str(cov),
                    str(i),
                    str(euc_dist),
                    str(F_2_percent),
                    str(F_2_z_score),
                    str(V_1_percent),
                    str(V_1_z_score),
                    str(V_2_percent),
                    str(V_2_z_score)
                ]) + '\n')
            print(cov, np.mean(reshuf_list))
    df_out.close()
Exemple #6
0
def run_ba_ntwk_cluster_sims(iter1=1000, iter2=1000, cov=0.2):
    df_out = open(mydir + '/data/simulations/cov_ba_ntwrk_cluster_methods.txt', 'w')
    df_out.write('\t'.join(['Prob', 'CC_mean', 'CC_025', 'CC_975', 'Method', 'Power', 'Power_025', 'Power_975', 'Z_mean', 'Z_025', 'Z_975']) + '\n')

    n_pops=100
    n_genes=50
    #covs = [0.05, 0.1, 0.15, 0.2]
    ps = [0, 0.2, 0.4, 0.6, 0.8, 1]
    for p in ps:
        eig_p_list = []
        mcd_k1_p_list = []
        mcd_k3_p_list = []
        mpd_k1_p_list = []
        mpd_k3_p_list = []

        eig_z_list = []
        mcd_k1_z_list = []
        mcd_k3_z_list = []
        mpd_k1_z_list = []
        mpd_k3_z_list = []

        cc_list = []
        for i in range(iter1):
            if i %100 ==0:
                print(ps, i)
            lambda_genes = np.random.gamma(shape=3, scale=1, size=n_genes)
            C, cc = pt.get_ba_cov_matrix(n_genes, cov=cov,  p=p)
            test_cov = np.stack( [pt.get_count_pop(lambda_genes, cov= C) for x in range(n_pops)] , axis=0 )
            X = test_cov/test_cov.sum(axis=1)[:,None]
            X -= np.mean(X, axis = 0)
            pca = PCA()
            pca_fit = pca.fit_transform(X)
            mpd_k1 = pt.get_mean_pairwise_euc_distance(pca_fit,k=1)
            mpd_k3 = pt.get_mean_pairwise_euc_distance(pca_fit,k=3)

            eig = pt.get_x_stat(pca.explained_variance_[:-1], n_features=n_genes)
            mcd_k1 = pt.get_mean_centroid_distance(pca_fit, k = 1)
            mcd_k3 = pt.get_mean_centroid_distance(pca_fit, k = 3)

            eig_null_list = []
            mcd_k1_null_list = []
            mcd_k3_null_list = []
            mpd_k1_null_list = []
            mpd_k3_null_list = []
            for j in range(iter2):
                test_cov_rndm = pt.get_random_matrix(test_cov)
                X_j = test_cov_rndm/test_cov_rndm.sum(axis=1)[:,None]
                X_j -= np.mean(X_j, axis = 0)
                pca_j = PCA()
                pca_fit_j = pca_j.fit_transform(X_j)
                #pca_fit_j = pca.fit_transform(X_j)
                mpd_k1_null_list.append( pt.get_mean_pairwise_euc_distance(pca_fit_j, k = 1 ) )
                mpd_k3_null_list.append( pt.get_mean_pairwise_euc_distance(pca_fit_j, k = 3 ) )
                mcd_k1_null_list.append(pt.get_mean_centroid_distance(pca_fit_j, k = 1))
                mcd_k3_null_list.append(pt.get_mean_centroid_distance(pca_fit_j, k = 3))
                eig_null_list.append( pt.get_x_stat(pca_j.explained_variance_[:-1], n_features=n_genes) )

            #print(len( [k for k in eig_null_list if k > eig] ) / iter1)
            eig_p_list.append(len( [k for k in eig_null_list if k > eig] ) / iter1)
            mcd_k1_p_list.append( len( [k for k in mcd_k1_null_list if k > mcd_k1] ) / iter1 )
            mcd_k3_p_list.append( len( [k for k in mcd_k3_null_list if k > mcd_k3] ) / iter1 )

            mpd_k1_p_list.append( len( [k for k in mpd_k1_null_list if k > mpd_k1] ) / iter1 )
            mpd_k3_p_list.append( len( [k for k in mpd_k3_null_list if k > mpd_k3] ) / iter1 )

            cc_list.append(cc)

            eig_z_list.append( (eig - np.mean(eig_null_list)) / np.std(eig_null_list)  )
            mcd_k1_z_list.append( (mcd_k1 - np.mean(mcd_k1_null_list)) / np.std(mcd_k1_null_list)  )
            mcd_k3_z_list.append( (mcd_k3 - np.mean(mcd_k3_null_list)) / np.std(mcd_k3_null_list)  )
            mpd_k1_z_list.append( (mpd_k1 - np.mean(mpd_k1_null_list)) / np.std(mpd_k1_null_list)  )
            mpd_k3_z_list.append( (mpd_k3 - np.mean(mpd_k3_null_list)) / np.std(mpd_k3_null_list)  )


        # calculate
        cc_mean = np.mean(cc_list)
        cc_bs_mean_list = []
        for iter_i in range(10000):
            cc_bs_mean_list.append( np.mean( np.random.choice(cc_list, size=50, replace=True ) ))
        cc_bs_mean_list.sort()
        cc_975 = cc_bs_mean_list[ int(0.975 * 10000) ]
        cc_025 = cc_bs_mean_list[ int(0.025 * 10000) ]


        eig_power = len([n for n in eig_p_list if n < 0.05]) / iter1
        eig_power_025, eig_power_975 = get_bootstrap_power_ci(eig_p_list)

        mcd_k1_power = len([n for n in mcd_k1_p_list if n < 0.05]) / iter1
        mcd_k1_power_025, mcd_k1_power_975 = get_bootstrap_power_ci(mcd_k1_p_list)

        mcd_k3_power = len([n for n in mcd_k3_p_list if n < 0.05]) / iter1
        mcd_k3_power_025, mcd_k3_power_975 = get_bootstrap_power_ci(mcd_k3_p_list)

        mpd_k1_power = len([n for n in mpd_k1_p_list if n < 0.05]) / iter1
        mpd_k1_power_025, mpd_k1_power_975 = get_bootstrap_power_ci(mpd_k1_p_list)

        mpd_k3_power = len([n for n in mpd_k3_p_list if n < 0.05]) / iter1
        mpd_k3_power_025, mpd_k3_power_975 = get_bootstrap_power_ci(mpd_k3_p_list)


        eig_z_025, eig_z_975 = get_bootstrap_ci(eig_z_list)
        mcd_k1_z_025, mcd_k1_z_975 = get_bootstrap_ci(mcd_k1_z_list)
        mcd_k3_z_025, mcd_k3_z_975 = get_bootstrap_ci(mcd_k3_z_list)
        mpd_k1_z_025, mpd_k1_z_975 = get_bootstrap_ci(mpd_k1_z_list)
        mpd_k3_z_025, mpd_k3_z_975 = get_bootstrap_ci(mpd_k3_z_list)

        df_out.write('\t'.join([str(p), str(cc_mean), str(cc_025), str(cc_975), 'Eig', str(eig_power), str(eig_power_025), str(eig_power_975), str(np.mean(eig_z_list)), str(eig_z_025), str(eig_z_975)]) + '\n')
        df_out.write('\t'.join([str(p), str(cc_mean), str(cc_025), str(cc_975), 'MCD_k1', str(mcd_k1_power), str(mcd_k1_power_025), str(mcd_k1_power_975), str(np.mean(mcd_k1_z_list)), str(mcd_k1_z_025), str(mcd_k1_z_975)]) + '\n')
        df_out.write('\t'.join([str(p), str(cc_mean), str(cc_025), str(cc_975), 'MCD_k3', str(mcd_k3_power), str(mcd_k3_power_025), str(mcd_k3_power_975), str(np.mean(mcd_k3_z_list)), str(mcd_k3_z_025), str(mcd_k3_z_975)]) + '\n')
        df_out.write('\t'.join([str(p), str(cc_mean), str(cc_025), str(cc_975), 'MPD_k1', str(mpd_k1_power), str(mpd_k1_power_025), str(mpd_k1_power_975), str(np.mean(mpd_k1_z_list)), str(mpd_k1_z_025), str(mpd_k1_z_975)]) + '\n')
        df_out.write('\t'.join([str(p), str(cc_mean), str(cc_025), str(cc_975), 'MPD_k3', str(mpd_k3_power), str(mpd_k3_power_025), str(mpd_k3_power_975), str(np.mean(mpd_k3_z_list)), str(mpd_k3_z_025), str(mpd_k3_z_975)]) + '\n')

    df_out.close()
Exemple #7
0
def run_ba_ntwk_cov_sims(iter1=1000, iter2=1000, n_pops=100, n_genes=50):
    df_out = open(mydir + '/data/simulations/cov_ba_ntwrk_methods.txt', 'w')
    df_out.write('\t'.join(['Cov', 'Method', 'Power', 'Power_025', 'Power_975', 'Z_mean', 'Z_025', 'Z_975']) + '\n')

    covs = [0.05, 0.1, 0.15, 0.2]
    #covs = [0.2]
    for cov in covs:
        eig_p_list = []
        mcd_k1_p_list = []
        mcd_k3_p_list = []
        mpd_k1_p_list = []
        mpd_k3_p_list = []

        eig_z_list = []
        mcd_k1_z_list = []
        mcd_k3_z_list = []
        mpd_k1_z_list = []
        mpd_k3_z_list = []
        for i in range(iter1):
            if i %100 ==0:
                print(cov, i)
            lambda_genes = np.random.gamma(shape=3, scale=1, size=n_genes)
            C = pt.get_ba_cov_matrix(n_genes, cov=cov)
            test_cov = np.stack( [pt.get_count_pop(lambda_genes, cov= C) for x in range(n_pops)] , axis=0 )
            X = test_cov/test_cov.sum(axis=1)[:,None]
            X -= np.mean(X, axis = 0)
            pca = PCA()
            pca_fit = pca.fit_transform(X)
            mpd_k1 = pt.get_mean_pairwise_euc_distance(pca_fit,k=1)
            mpd_k3 = pt.get_mean_pairwise_euc_distance(pca_fit,k=3)

            eig = pt.get_x_stat(pca.explained_variance_[:-1], n_features=n_genes)
            mcd_k1 = pt.get_mean_centroid_distance(pca_fit, k = 1)
            mcd_k3 = pt.get_mean_centroid_distance(pca_fit, k = 3)

            #print(pca.explained_variance_[:-1])
            #print(pt.get_x_stat(pca.explained_variance_[:-1]))
            eig_null_list = []
            mcd_k1_null_list = []
            mcd_k3_null_list = []
            mpd_k1_null_list = []
            mpd_k3_null_list = []
            for j in range(iter2):
                test_cov_rndm = pt.get_random_matrix(test_cov)
                X_j = test_cov_rndm/test_cov_rndm.sum(axis=1)[:,None]
                X_j -= np.mean(X_j, axis = 0)
                pca_j = PCA()
                pca_fit_j = pca_j.fit_transform(X_j)
                #pca_fit_j = pca.fit_transform(X_j)
                mpd_k1_null_list.append( pt.get_mean_pairwise_euc_distance(pca_fit_j, k = 1 ) )
                mpd_k3_null_list.append( pt.get_mean_pairwise_euc_distance(pca_fit_j, k = 3 ) )
                mcd_k1_null_list.append(pt.get_mean_centroid_distance(pca_fit_j, k = 1))
                mcd_k3_null_list.append(pt.get_mean_centroid_distance(pca_fit_j, k = 3))
                eig_null_list.append( pt.get_x_stat(pca_j.explained_variance_[:-1], n_features=n_genes) )

            eig_p_list.append(len( [k for k in eig_null_list if k > eig] ) / iter1)
            mcd_k1_p_list.append( len( [k for k in mcd_k1_null_list if k > mcd_k1] ) / iter1 )
            mcd_k3_p_list.append( len( [k for k in mcd_k3_null_list if k > mcd_k3] ) / iter1 )

            mpd_k1_p_list.append( len( [k for k in mpd_k1_null_list if k > mpd_k1] ) / iter1 )
            mpd_k3_p_list.append( len( [k for k in mpd_k3_null_list if k > mpd_k3] ) / iter1 )


            eig_z_list.append( (eig - np.mean(eig_null_list)) / np.std(eig_null_list)  )
            mcd_k1_z_list.append( (mcd_k1 - np.mean(mcd_k1_null_list)) / np.std(mcd_k1_null_list)  )
            mcd_k3_z_list.append( (mcd_k3 - np.mean(mcd_k3_null_list)) / np.std(mcd_k3_null_list)  )
            mpd_k1_z_list.append( (mpd_k1 - np.mean(mpd_k1_null_list)) / np.std(mpd_k1_null_list)  )
            mpd_k3_z_list.append( (mpd_k3 - np.mean(mpd_k3_null_list)) / np.std(mpd_k3_null_list)  )



        # calculate power
        eig_power = len([n for n in eig_p_list if n < 0.05]) / iter1
        eig_power_025, eig_power_975 = get_bootstrap_power_ci(eig_p_list)

        mcd_k1_power = len([n for n in mcd_k1_p_list if n < 0.05]) / iter1
        mcd_k1_power_025, mcd_k1_power_975 = get_bootstrap_power_ci(mcd_k1_p_list)

        mcd_k3_power = len([n for n in mcd_k3_p_list if n < 0.05]) / iter1
        mcd_k3_power_025, mcd_k3_power_975 = get_bootstrap_power_ci(mcd_k3_p_list)

        mpd_k1_power = len([n for n in mpd_k1_p_list if n < 0.05]) / iter1
        mpd_k1_power_025, mpd_k1_power_975 = get_bootstrap_power_ci(mpd_k1_p_list)

        mpd_k3_power = len([n for n in mpd_k3_p_list if n < 0.05]) / iter1
        mpd_k3_power_025, mpd_k3_power_975 = get_bootstrap_power_ci(mpd_k3_p_list)

        eig_z_025, eig_z_975 = get_bootstrap_ci(eig_z_list)
        mcd_k1_z_025, mcd_k1_z_975 = get_bootstrap_ci(mcd_k1_z_list)
        mcd_k3_z_025, mcd_k3_z_975 = get_bootstrap_ci(mcd_k3_z_list)
        mpd_k1_z_025, mpd_k1_z_975 = get_bootstrap_ci(mpd_k1_z_list)
        mpd_k3_z_025, mpd_k3_z_975 = get_bootstrap_ci(mpd_k3_z_list)

        df_out.write('\t'.join([str(cov), 'Eig', str(eig_power), str(eig_power_025), str(eig_power_975), str(np.mean(eig_z_list)), str(eig_z_025), str(eig_z_975)]) + '\n')
        df_out.write('\t'.join([str(cov), 'MCD_k1', str(mcd_k1_power), str(mcd_k1_power_025), str(mcd_k1_power_975), str(np.mean(mcd_k1_z_list)), str(mcd_k1_z_025), str(mcd_k1_z_975)]) + '\n')
        df_out.write('\t'.join([str(cov), 'MCD_k3', str(mcd_k3_power), str(mcd_k3_power_025), str(mcd_k3_power_975), str(np.mean(mcd_k3_z_list)), str(mcd_k3_z_025), str(mcd_k3_z_975)]) + '\n')
        df_out.write('\t'.join([str(cov), 'MPD_k1', str(mpd_k1_power), str(mpd_k1_power_025), str(mpd_k1_power_975), str(np.mean(mpd_k1_z_list)), str(mpd_k1_z_025), str(mpd_k1_z_975)]) + '\n')
        df_out.write('\t'.join([str(cov), 'MPD_k3', str(mpd_k3_power), str(mpd_k3_power_025), str(mpd_k3_power_975), str(np.mean(mpd_k3_z_list)), str(mpd_k3_z_025), str(mpd_k3_z_975)]) + '\n')

    df_out.close()