def __init__(self): self.fc1 = layers.fc(size=512, act='relu', name='fc1') self.fc2 = layers.fc(size=512, act='relu', name='fc2') self.fc3 = layers.fc(size=512, act='relu', name='fc3') self.fc4 = layers.fc(size=512, act='relu', name='fc4') self.fc5 = layers.fc(size=512, act='relu', name='fc5') self.fc6 = layers.fc(size=500, act='relu', name='fc6') self.month_embedding = layers.embedding(size=[12, 64], name='emb_month') self.hour_embedding = layers.embedding(size=[24, 64], name='emb_hour')
def __init__(self): self.fc1 = layers.fc(size=1024, act='relu', name='fc1') self.fc2 = layers.fc(size=900, act='relu', name='fc2') self.fc3 = layers.fc(size=800, act='relu', name='fc3') self.fc4 = layers.fc(size=700, act='relu', name='fc4') self.fc5 = layers.fc(size=512, act='relu', name='fc5') self.fc6 = layers.fc(size=label_dim, act='relu', name='fc6') self.month_embedding = layers.embedding(size=[13, 256], name='emb_month') self.hour_embedding = layers.embedding(size=[24, 256], name='emb_hour') self.line_status_embedding = layers.embedding(size=[400, 256], name='emb_line_status')
def __init__(self, act_dim): hid1_size = 256 hid2_size = 256 hid3_size = 256 # 3层全连接网络 self.emb_1 = layers.embedding(size=[128, 64]) self.fc1 = layers.fc(size=hid1_size, act='relu') self.fc2 = layers.fc(size=hid2_size, act='relu') self.fc4 = layers.fc(size=act_dim, act=None)
def __init__(self): self.fc1 = layers.fc(100) self.fc2 = layers.fc(100) self.fc3 = layers.fc(100, bias_attr=False) self.fc4 = layers.fc(100, param_attr=False) self.fc5 = layers.fc(100, name="fc", bias_attr=False) self.fc6 = layers.fc(100, param_attr=fluid.initializer.Xavier()) self.embedding = layers.embedding((100, 128)) self.embedding_custom = layers.embedding((100, 128), name="embedding_custom") ## although here self.conv2d shares param with self.embedding, ## it might be invalid because the param sizes do not match self.conv2d = layers.conv2d( num_filters=64, filter_size=3, param_attr=self.embedding.attr_holder.param_attr, name="my_conv2d") self.batch_norm = layers.batch_norm()
def default_embedding(size, name): gradient_clip = default_param_clip() reg = fluid.regularizer.L2Decay(1e-5) # IMPORTANT, to prevent overfitting. embed = layers.embedding(name=name, size=size, param_attr=ParamAttr( initializer=fluid.initializer.Xavier(), gradient_clip=gradient_clip, regularizer=reg), is_sparse=False) return embed
def default_embedding(size, name, embed_clip, regularizer=None): gradient_clip = default_param_clip() if embed_clip else None embed = layers.embedding(name=name, size=size, param_attr=ParamAttr(initializer=fluid.initializer.Xavier(), gradient_clip=gradient_clip, regularizer=regularizer), is_sparse=False, # turn on lazy_mode when using Adam is_distributed=False, # TODO https://github.com/PaddlePaddle/Paddle/issues/15133 ) return embed
def __init__(self): self.fc1 = layers.fc(64, bias_attr=False) self.fc2 = layers.fc(64, bias_attr=False) self.fc3 = layers.fc(64, name="fc") self.fc4 = layers.fc(64, name="fc") self.embedding = layers.embedding( (100, 64), param_attr=self.fc1.attr_holder.param_attr) self.created_param = layers.create_parameter( shape=[100], dtype='float32', default_initializer=fluid.initializer.Uniform(low=-1.0, high=1.0)) self.batch_norm = layers.batch_norm()