def getOptimizer(optimizer_config): """Construct optimizer from a config dict Args: optimizer_config(dict): configuration for optimizer Returns: Optimizer """ if optimizer_config == None: return BayesianOptimizer(n_init=2, n_iter=2) optimizer_type = optimizer_config.get('type') if optimizer_type == 'bayesopt': n_init = optimizer_config.get('n_init') n_iter = optimizer_config.get('n_iter') try: n_init = int(n_init) n_iter = int(n_iter) return BayesianOptimizer(n_init=n_init, n_iter=n_iter) except: return None elif optimizer_type == 'grid': num_configs_per_param = optimizer_config.get('num_configs_per_param') try: num_configs_per_param = int(num_configs_per_param) return GridSearch(num_configs_per_param=num_configs_per_param) except: return None
def getOptimizer(optimizer_config): #TODO: add support to more optimizer """Construct optimizer from a config dict Args: optimizer_config(dict): configuration for optimizer Returns: Optimizer """ if optimizer_config == None: return BayesianOptimizer(n_init=2, n_iter=2) optimizer_type = optimizer_config.get('type') if optimizer_type == 'grid': num_configs_per_param = optimizer_config.get('num_configs_per_param') try: # num_configs_per_param = int(num_configs_per_param) num_configs_per_param = list(num_configs_per_param) return GridSearch(num_configs_per_param=num_configs_per_param) except: return None n_iter = get_from_dic(optimizer_config, 'n_iter') budget = get_from_dic(optimizer_config, 'budget') converge_thres = get_from_dic(optimizer_config, 'converge_thres') converge_steps = get_from_dic(optimizer_config, 'converge_steps') # n_iter = optimizer_config.get('n_iter') if n_iter is not None: n_iter = int(n_iter) if budget is not None: budget = float(budget) if converge_thres is not None: converge_thres = float(converge_thres) if converge_steps is not None: converge_steps = int(converge_steps) if optimizer_type == 'bayesopt': n_init = get_from_dic(optimizer_config, 'n_init') alpha = get_from_dic(optimizer_config, 'alpha') kappa = get_from_dic(optimizer_config, 'kappa') if n_init is not None: n_init = int(n_init) if alpha is not None: alpha = float(alpha) if kappa is not None: kappa = float(kappa) try: return BayesianOptimizer(n_init=n_init, n_iter=n_iter, alpha=alpha, kappa=kappa, budget=budget, converge_thres=converge_thres, converge_steps=converge_steps) except: return None # try: # # n_iter = int(n_iter) # if 'alpha' in optimizer_config.keys(): # alpha = optimizer_config.get('alpha') # alpha = float(alpha) # if 'kappa' in optimizer_config.keys(): # kappa = optimizer_config.get('kappa') # kappa = float(kappa) # return BayesianOptimizer(n_init=n_init, n_iter=n_iter, alpha=alpha, kappa=kappa) # else: # return BayesianOptimizer(n_init=n_init, n_iter=n_iter, alpha=alpha) # else: # return BayesianOptimizer(n_init=n_init, n_iter=n_iter) # except: # return None elif optimizer_type == 'random': random_seed = get_from_dic(optimizer_config, 'random_seed') if random_seed is not None: random_seed = int(random_seed) try: return RandomSearch(n_iter=n_iter, random_seed=random_seed, budget=budget, converge_thres=converge_thres, converge_steps=converge_steps) except: return None elif optimizer_type == 'coordinate': random_seed = get_from_dic(optimizer_config, 'random_seed') if random_seed is not None: random_seed = int(random_seed) try: return CoordinateSearch(n_iter=n_iter, random_seed=random_seed, budget=budget, converge_thres=converge_thres, converge_steps=converge_steps) except: return None
'sqlite', '', '', '', 'liteTest', ) # need to define these DB related parameters AWSRDS_storage = RelationalDB('postgresql', DB_USER, DB_PASSWORD, DB_HOST, DB_NAME) # define optimizer bayesian_optimizer = BayesianOptimizer(n_init=2, n_iter=1, alpha=1e-3, kappa=2.5, utility='ucb', budget=None, converge_thres=None, converge_steps=None) # search on 2*2*2 grid grid_optimizer = GridSearch([2, 2, 2]) random_optimizer = RandomSearch(n_iter=10, random_seed=None, budget=None, converge_thres=None, converge_steps=None) coordinate_optimizer = CoordinateSearch(n_init=1, n_iter=20,
command_template_string=command_template_string, # we use LocalCompute here b/c we don't want to launch jobs on EC2 like the server does compute=LocalCompute(max_threads=8)) # when run on the server, this doesn't change - we always connect to an AWS RDS postgres database # When running locally you can just use a sqlite database like below. The last argument is the database name # so you could test a blank slate by just changing the name or deleting the old liteTest.db file. storage = RelationalDB( 'sqlite', '', '', '', 'liteTest', ) # when run on server, this is determined by optimizer the user POSTs optimizer = BayesianOptimizer(n_init=2, n_iter=1, alpha=1e-3) li = [2, 2, 2] #optimizer = GridSearch(li) #optimizer = RandomSearch(n_iter=10) #optimizer = CoordinateSearch(n_iter=20) # this is what runs it all po = ParslRunner(obj_func=getattr(paropt.runner.parsl, "timeCmd"), obj_func_params={'timeout': 15}, optimizer=optimizer, storage=storage, experiment=experiment_inst, logs_root_dir='./myTestLogs') po.run()
def setupAWS(): # launch a small parsl job on AWS to initialize parsl's AWS VPC stuff # If run successfully, it will create the awsproviderstate.json file on host in paropt-service/config/ # Needs to be run each time the AWS credentials are changed for the server # Intended to be used with a `docker run ...` command before running production server import os import paropt from paropt.runner import ParslRunner from paropt.storage import RelationalDB from paropt.optimizer import BayesianOptimizer, GridSearch from paropt.runner.parsl import timeCommand from paropt.storage.entities import Parameter, PARAMETER_TYPE_INT, Experiment, LocalCompute, EC2Compute container_state_file_dir = os.getenv("CONTAINER_STATE_FILE_DIR") if not container_state_file_dir: raise Exception( "Missing required env var CONTAINER_STATE_FILE_DIR which is used for copying awsproviderstate.json to host" ) paropt.setConsoleLogger() command_template_string = """ #! /bin/bash sleep ${myParam} """ experiment_inst = Experiment( tool_name='tmptool', parameters=[ Parameter(name="myParam", type=PARAMETER_TYPE_INT, minimum=0, maximum=10), ], command_template_string=command_template_string, compute=EC2Compute( type='ec2', instance_model= "c4.large", # using c5 b/c previously had trouble with t2 spot instances instance_family="c4", ami= "ami-0257427d05c8c18ac" # parsl base ami - preinstalled apt packages )) # use an ephemeral database storage = RelationalDB( 'sqlite', '', '', '', 'tmpSqliteDB', ) # run simple bayes opt bayesian_optimizer = BayesianOptimizer( n_init=1, n_iter=1, ) po = ParslRunner(parsl_app=timeCommand, optimizer=bayesian_optimizer, storage=storage, experiment=experiment_inst, logs_root_dir='/var/log/paropt') po.run(debug=True) po.cleanup() # print result print(po.run_result) # move the awsproviderstate file into expected directory from shutil import copyfile copyfile("awsproviderstate.json", f'{container_state_file_dir}/awsproviderstate.json')