Exemple #1
0
    def _startRunner(cls, experiment_dict, optimizer):
        """Runs an experiment with paropt. This is the function used for job queueing

    Args:
      experiment_dict(dict): dict representation of experiment to run.
        Although it's a dict, the experiment it represents should already exist in the database.
      optimizer(Optimizer): Optimizer instance to use for running the experiment
    
    Returns:
      result(dict): result of the run
    
    Raises:
      Exception: when the runner fails, it will raise an exception with the message from the result
    """
        paropt.setConsoleLogger()
        experiment = cls.dictToExperiment(experiment_dict)
        storage = RelationalDB('postgresql', DB_USER, DB_PASSWORD, DB_HOST,
                               DB_NAME)

        po = ParslRunner(parsl_app=timeCommand,
                         optimizer=optimizer,
                         storage=storage,
                         experiment=experiment,
                         logs_root_dir='/var/log/paropt')
        po.run(debug=True)
        # cleanup launched instances
        po.cleanup()

        if po.run_result['success'] == False:
            raise Exception(po.run_result['message'])

        return po.run_result
Exemple #2
0
def startRunner(db_storage, experiment_dict, optimizer, obj_config):
    """Runs an experiment with paropt. This is the function used for job queueing

    Args:
        experiment_dict(dict): dict representation of experiment to run.
            Although it's a dict, the experiment it represents should already exist in the database.
        optimizer(Optimizer): Optimizer instance to use for running the experiment
    
    Returns:
        result(dict): result of the run
    
    Raises:
        Exception: when the runner fails, it will raise an exception with the message from the result
    """
    paropt.setConsoleLogger()
    experiment = dictToExperiment(experiment_dict)
    storage = db_storage

    if not os.path.exists(LOGS_ROOT_DIR):
        os.makedirs(LOGS_ROOT_DIR)
    po = ParslRunner(obj_func=getattr(paropt.runner.parsl,
                                      obj_config['obj_name']),
                     optimizer=optimizer,
                     obj_func_params=obj_config['obj_params'],
                     storage=storage,
                     experiment=experiment,
                     logs_root_dir=LOGS_ROOT_DIR)
    po.run(debug=True)
    # cleanup launched instances
    po.cleanup()

    # if po.run_result['success'] == False:
    #     raise Exception(po.run_result['message'])

    return po.run_result
Exemple #3
0
import os

import paropt
from paropt.runner import ParslRunner
from paropt.storage import RelationalDB
from paropt.optimizer import BayesianOptimizer, GridSearch, RandomSearch
from paropt.runner.parsl import timeCmd, searchMatrix, variantCallerAccu
from paropt.storage.entities import Parameter, PARAMETER_TYPE_INT, PARAMETER_TYPE_FLOAT, Experiment, LocalCompute, EC2Compute, PBSProCompute
import json
import sys

paropt.setConsoleLogger()

# when running on server, the experiment is fetched first before doing anything
# if the experiment isn't found then running the trial fails
command_template_string = """
#! /bin/bash
sleep ${myParam}
sleep ${myParamB}
sleep ${myParamC}
"""

experiment_inst = Experiment(
    tool_name='anothertoolaaa',
    parameters=[
        Parameter(name="myParam",
                  type=PARAMETER_TYPE_INT,
                  minimum=5,
                  maximum=10),
        Parameter(name="myParamB",
                  type=PARAMETER_TYPE_INT,
Exemple #4
0
def setupAWS():
    # launch a small parsl job on AWS to initialize parsl's AWS VPC stuff
    # If run successfully, it will create the awsproviderstate.json file on host in paropt-service/config/
    # Needs to be run each time the AWS credentials are changed for the server
    # Intended to be used with a `docker run ...` command before running production server
    import os

    import paropt
    from paropt.runner import ParslRunner
    from paropt.storage import RelationalDB
    from paropt.optimizer import BayesianOptimizer, GridSearch
    from paropt.runner.parsl import timeCommand
    from paropt.storage.entities import Parameter, PARAMETER_TYPE_INT, Experiment, LocalCompute, EC2Compute

    container_state_file_dir = os.getenv("CONTAINER_STATE_FILE_DIR")
    if not container_state_file_dir:
        raise Exception(
            "Missing required env var CONTAINER_STATE_FILE_DIR which is used for copying awsproviderstate.json to host"
        )

    paropt.setConsoleLogger()

    command_template_string = """
    #! /bin/bash

    sleep ${myParam}
    """

    experiment_inst = Experiment(
        tool_name='tmptool',
        parameters=[
            Parameter(name="myParam",
                      type=PARAMETER_TYPE_INT,
                      minimum=0,
                      maximum=10),
        ],
        command_template_string=command_template_string,
        compute=EC2Compute(
            type='ec2',
            instance_model=
            "c4.large",  # using c5 b/c previously had trouble with t2 spot instances
            instance_family="c4",
            ami=
            "ami-0257427d05c8c18ac"  # parsl base ami - preinstalled apt packages
        ))

    # use an ephemeral database
    storage = RelationalDB(
        'sqlite',
        '',
        '',
        '',
        'tmpSqliteDB',
    )

    # run simple bayes opt
    bayesian_optimizer = BayesianOptimizer(
        n_init=1,
        n_iter=1,
    )

    po = ParslRunner(parsl_app=timeCommand,
                     optimizer=bayesian_optimizer,
                     storage=storage,
                     experiment=experiment_inst,
                     logs_root_dir='/var/log/paropt')

    po.run(debug=True)
    po.cleanup()

    # print result
    print(po.run_result)

    # move the awsproviderstate file into expected directory
    from shutil import copyfile
    copyfile("awsproviderstate.json",
             f'{container_state_file_dir}/awsproviderstate.json')