def _setup_driver(self, problem): """ Prepare the driver for execution. This is the final thing to run during setup. Parameters ---------- paropt_problem : <Problem> Pointer """ # TODO: # - logic for different opt algorithms # - treat equality constraints super(ParOptDriver, self)._setup_driver(problem) # Raise error if multiple objectives are provided if len(self._objs) > 1: msg = 'ParOpt currently does not support multiple objectives.' raise RuntimeError(msg.format(self.__class__.__name__)) # Create the ParOptProblem from the OpenMDAO problem self.paropt_problem = ParOptProblem(problem) self.opt = ParOpt.Optimizer(self.paropt_problem, self.options) return
def paropt_truss(truss, use_hessian=False): ''' Optimize the given truss structure using ParOpt ''' fname = os.path.join(prefix, 'truss_paropt%dx%d.out' % (N, M)) options = { 'algorithm': 'ip', 'qn_subspace_size': 10, 'abs_res_tol': 1e-6, 'barrier_strategy': 'complementarity_fraction', 'use_hvec_product': True, 'gmres_subspace_size': 25, 'nk_switch_tol': 1.0, 'eisenstat_walker_gamma': 0.01, 'eisenstat_walker_alpha': 0.0, 'max_gmres_rtol': 1.0, 'output_level': 1, 'armijo_constant': 1e-5, 'output_file': fname } if use_hessian is False: options['use_hvec_product'] = False opt = ParOpt.Optimizer(truss, options) opt.optimize() return opt
def plot_it_all(problem): """ Plot a carpet plot with the search histories for steepest descent, conjugate gradient and BFGS from the same starting point. """ # Create the data for the carpet plot n = 150 xlow = -4.0 xhigh = 4.0 x1 = np.linspace(xlow, xhigh, n) r = np.zeros((n, n)) for j in range(n): for i in range(n): fail, fobj, con = problem.evalObjCon([x1[i], x1[j]]) r[j, i] = fobj # Assign the contour levels levels = np.min(r) + np.linspace(0, 1.0, 75)**2 * (np.max(r) - np.min(r)) # Create the plot fig = plt.figure(facecolor='w') plt.contour(x1, x1, r, levels) colours = [ '-bo', '-ko', '-co', '-mo', '-yo', '-bx', '-kx', '-cx', '-mx', '-yx' ] options = { 'algorithm': 'tr', 'tr_init_size': 0.05, 'tr_min_size': 1e-6, 'tr_max_size': 10.0, 'tr_eta': 0.1, 'tr_adaptive_gamma_update': True, 'tr_max_iterations': 200 } for k in range(len(colours)): # Optimize the problem problem.x_hist = [] opt = ParOpt.Optimizer(rosen, options) opt.optimize() # Copy out the steepest descent points sd = np.zeros((2, len(problem.x_hist))) for i in range(len(problem.x_hist)): sd[0, i] = problem.x_hist[i][0] sd[1, i] = problem.x_hist[i][1] plt.plot(sd[0, :], sd[1, :], colours[k], label='IP %d' % (sd.shape[1])) plt.plot(sd[0, -1], sd[1, -1], '-ro') plt.legend() plt.axis([xlow, xhigh, xlow, xhigh]) plt.show()
def solve_problem(eigs, filename=None, use_stdout=False, use_tr=False): # Get the A matrix A = create_random_problem(eigs) # Create the other problem data b = np.random.uniform(size=len(eigs)) Acon = np.random.uniform(size=len(eigs)) bcon = np.random.uniform() problem = Quadratic(A, b, Acon, bcon) options = { 'algorithm': 'ip', 'abs_res_tol': 1e-8, 'starting_point_strategy': 'affine_step', 'barrier_strategy': 'monotone', 'start_affine_multiplier_min': 0.01, 'penalty_gamma': 1000.0, 'qn_subspace_size': 10, 'qn_type': 'bfgs', 'output_file': filename} if use_tr: options = { 'algorithm': 'tr', 'tr_init_size': 0.05, 'tr_min_size': 1e-6, 'tr_max_size': 10.0, 'tr_eta': 0.25, 'tr_adaptive_gamma_update': True, 'tr_max_iterations': 200, 'penalty_gamma': 10.0, 'qn_subspace_size': 10, 'qn_type': 'bfgs', 'abs_res_tol': 1e-8, 'output_file': filename, 'tr_output_file': os.path.splitext(filename)[0] + '.tr', 'starting_point_strategy': 'affine_step', 'barrier_strategy': 'monotone', 'start_affine_multiplier_min': 0.01} opt = ParOpt.Optimizer(problem, options) # Set a new starting point opt.optimize() x, z, zw, zl, zu = opt.getOptimizedPoint() return
def paropt_truss(truss, use_hessian=False, use_tr=False, prefix='results'): """ Optimize the given truss structure using ParOpt """ fname = os.path.join(prefix, 'truss_paropt%dx%d.out' % (N, M)) options = { 'algorithm': 'ip', 'qn_subspace_size': 10, 'abs_res_tol': 1e-5, 'norm_type': 'l1', 'init_barrier_param': 10.0, 'monotone_barrier_fraction': 0.75, 'barrier_strategy': 'complementarity_fraction', 'starting_point_strategy': 'least_squares_multipliers', 'use_hvec_product': True, 'gmres_subspace_size': 50, 'nk_switch_tol': 1e3, 'eisenstat_walker_gamma': 0.01, 'eisenstat_walker_alpha': 0.0, 'max_gmres_rtol': 1.0, 'output_level': 1, 'armijo_constant': 1e-5, 'output_file': fname } if use_tr: options['algorithm'] = 'tr' options['abs_res_tol'] = 1e-8 options['barrier_strategy'] = 'monotone' options['tr_max_size'] = 100.0 options['tr_linfty_tol'] = 1e-5 options['tr_l1_tol'] = 0.0 options['tr_max_iterations'] = 2000 options['tr_penalty_gamma_max'] = 1e6 options['tr_adaptive_gamma_update'] = True options['tr_output_file'] = fname.split('.')[0] + '.tr' if use_hessian is False: options['use_hvec_product'] = False opt = ParOpt.Optimizer(truss, options) opt.optimize() return opt
options = { 'algorithm': 'tr', 'tr_init_size': 0.05, 'tr_min_size': 1e-6, 'tr_max_size': 10.0, 'tr_eta': 0.25, 'tr_infeas_tol': 1e-6, 'tr_l1_tol': 1e-3, 'tr_linfty_tol': 0.0, 'tr_adaptive_gamma_update': True, 'tr_max_iterations': 1000, 'penalty_gamma': 10.0, 'qn_subspace_size': 10, 'qn_type': 'bfgs', 'abs_res_tol': 1e-8, 'starting_point_strategy': 'affine_step', 'barrier_strategy': 'mehrotra_predictor_corrector', 'tr_steering_barrier_strategy': 'mehrotra_predictor_corrector', 'tr_steering_starting_point_strategy': 'affine_step', 'use_line_search': False} # Set up the optimizer opt = ParOpt.Optimizer(problem, options) # Set a new starting point opt.optimize() x, z, zw, zl, zu = opt.getOptimizedPoint()
def __call__(self, optProb, sens=None, sensStep=None, sensMode=None, storeHistory=None, hotStart=None, storeSens=True): """ This is the main routine used to solve the optimization problem. Parameters ---------- optProb : Optimization or Solution class instance This is the complete description of the optimization problem to be solved by the optimizer sens : str or python Function. Specifiy method to compute sensitivities. To explictly use pyOptSparse gradient class to do the derivatives with finite differenes use \'FD\'. \'sens\' may also be \'CS\' which will cause pyOptSpare to compute the derivatives using the complex step method. Finally, \'sens\' may be a python function handle which is expected to compute the sensitivities directly. For expensive function evaluations and/or problems with large numbers of design variables this is the preferred method. sensStep : float Set the step size to use for design variables. Defaults to 1e-6 when sens is \'FD\' and 1e-40j when sens is \'CS\'. sensMode : str Use \'pgc\' for parallel gradient computations. Only available with mpi4py and each objective evaluation is otherwise serial storeHistory : str File name of the history file into which the history of this optimization will be stored hotStart : str File name of the history file to "replay" for the optimziation. The optimization problem used to generate the history file specified in \'hotStart\' must be **IDENTICAL** to the currently supplied \'optProb\'. By identical we mean, **EVERY SINGLE PARAMETER MUST BE IDENTICAL**. As soon as he requested evaluation point from ParOpt does not match the history, function and gradient evaluations revert back to normal evaluations. storeSens : bool Flag sepcifying if sensitivities are to be stored in hist. This is necessay for hot-starting only. """ self.callCounter = 0 self.storeSens = storeSens if len(optProb.constraints) == 0: # If the problem is unconstrained, add a dummy constraint. self.unconstrained = True optProb.dummyConstraint = True # Save the optimization problem and finalize constraint # jacobian, in general can only do on root proc self.optProb = optProb self.optProb.finalizeDesignVariables() self.optProb.finalizeConstraints() self._setInitialCacheValues() self._setSens(sens, sensStep, sensMode) blx, bux, xs = self._assembleContinuousVariables() xs = np.maximum(xs, blx) xs = np.minimum(xs, bux) # The number of design variables n = len(xs) oneSided = True if self.unconstrained: m = 0 else: indices, blc, buc, fact = self.optProb.getOrdering( ["ne", "le", "ni", "li"], oneSided=oneSided) m = len(indices) self.optProb.jacIndices = indices self.optProb.fact = fact self.optProb.offset = buc if self.optProb.comm.rank == 0: # Set history/hotstart self._setHistory(storeHistory, hotStart) class Problem(_ParOpt.Problem): def __init__(self, ptr, n, m, xs, blx, bux): super(Problem, self).__init__(MPI.COMM_SELF, n, m) self.ptr = ptr self.n = n self.m = m self.xs = xs self.blx = blx self.bux = bux self.fobj = 0.0 return def getVarsAndBounds(self, x, lb, ub): """Get the variable values and bounds""" # Find the average distance between lower and upper bound bound_sum = 0.0 for i in range(len(x)): if self.blx[i] <= -1e20 or self.bux[i] >= 1e20: bound_sum += 1.0 else: bound_sum += self.bux[i] - self.blx[i] bound_sum = bound_sum / len(x) for i in range(len(x)): x[i] = self.xs[i] lb[i] = self.blx[i] ub[i] = self.bux[i] if self.xs[i] <= self.blx[i]: x[i] = self.blx[i] + 0.5 * np.min( (bound_sum, self.bux[i] - self.blx[i])) elif self.xs[i] >= self.bux[i]: x[i] = self.bux[i] - 0.5 * np.min( (bound_sum, self.bux[i] - self.blx[i])) return def evalObjCon(self, x): """Evaluate the objective and constraint values""" fobj, fcon, fail = self.ptr._masterFunc( x[:], ["fobj", "fcon"]) self.fobj = fobj return fail, fobj, -fcon def evalObjConGradient(self, x, g, A): """Evaluate the objective and constraint gradients""" gobj, gcon, fail = self.ptr._masterFunc( x[:], ["gobj", "gcon"]) g[:] = gobj[:] for i in range(self.m): A[i][:] = -gcon[i][:] return fail optTime = MPI.Wtime() # Optimize the problem problem = Problem(self, n, m, xs, blx, bux) optimizer = _ParOpt.Optimizer(problem, self.set_options) optimizer.optimize() x, z, zw, zl, zu = optimizer.getOptimizedPoint() # Set the total opt time optTime = MPI.Wtime() - optTime # Get the obective function value fobj = problem.fobj if self.storeHistory: self.metadata["endTime"] = datetime.datetime.now().strftime( "%Y-%m-%d %H:%M:%S") self.metadata["optTime"] = optTime self.hist.writeData("metadata", self.metadata) self.hist.close() # Create the optimization solution. Note that the signs on the multipliers # are switch since ParOpt uses a formulation with c(x) >= 0, while pyOpt # uses g(x) = -c(x) <= 0. Therefore the multipliers are reversed. sol_inform = {} # If number of constraints is zero, ParOpt returns z as None. # Thus if there is no constraints, should pass an empty list # to multipliers instead of z. if z is not None: sol = self._createSolution(optTime, sol_inform, fobj, x[:], multipliers=-z) else: sol = self._createSolution(optTime, sol_inform, fobj, x[:], multipliers=[]) # Indicate solution finished self.optProb.comm.bcast(-1, root=0) else: # We are not on the root process so go into waiting loop: self._waitLoop() sol = None # Communication solution and return sol = self._communicateSolution(sol) return sol
def plot_it_all(problem, use_tr=False): """ Plot a carpet plot with the search histories for steepest descent, conjugate gradient and BFGS from the same starting point. """ # Check the problem gradients problem.checkGradients(1e-6) # Create the data for the carpet plot n = 150 xlow = -4.0 xhigh = 4.0 x1 = np.linspace(xlow, xhigh, n) ylow = -3.0 yhigh = 3.0 x2 = np.linspace(ylow, yhigh, n) r = np.zeros((n, n)) for j in range(n): for i in range(n): fail, fobj, con = problem.evalObjCon([x1[i], x2[j]]) r[j, i] = fobj # Assign the contour levels levels = np.min(r) + np.linspace(0, 1.0, 75)**2 * (np.max(r) - np.min(r)) # Create the plot fig = plt.figure(facecolor='w') plt.contour(x1, x2, r, levels) plt.plot([0.5 - yhigh, 0.5 - ylow], [yhigh, ylow], '-k') colours = [ '-bo', '-ko', '-co', '-mo', '-yo', '-bx', '-kx', '-cx', '-mx', '-yx' ] for k in range(len(colours)): # Optimize the problem problem.x_hist = [] # Set the trust region parameters filename = 'paropt.out' options = { 'algorithm': 'ip', 'abs_res_tol': 1e-8, 'starting_point_strategy': 'affine_step', 'barrier_strategy': 'monotone', 'start_affine_multiplier_min': 0.01, 'penalty_gamma': 1000.0, 'qn_subspace_size': 10, 'qn_type': 'bfgs' } if use_tr: options = { 'algorithm': 'tr', 'tr_init_size': 0.05, 'tr_min_size': 1e-6, 'tr_max_size': 10.0, 'tr_eta': 0.25, 'penalty_gamma': 10.0, 'qn_subspace_size': 10, 'qn_type': 'bfgs', 'abs_res_tol': 1e-8, 'output_file': filename, 'tr_output_file': os.path.splitext(filename)[0] + '.tr', 'starting_point_strategy': 'affine_step', 'barrier_strategy': 'monotone', 'start_affine_multiplier_min': 0.01 } opt = ParOpt.Optimizer(problem, options) # Set a new starting point opt.optimize() x, z, zw, zl, zu = opt.getOptimizedPoint() # Copy out the steepest descent points popt = np.zeros((2, len(problem.x_hist))) for i in range(len(problem.x_hist)): popt[0, i] = problem.x_hist[i][0] popt[1, i] = problem.x_hist[i][1] plt.plot(popt[0, :], popt[1, :], colours[k], label='ParOpt %d' % (popt.shape[1])) plt.plot(popt[0, -1], popt[1, -1], '-ro') # Print the data to the screen g = np.zeros(2) A = np.zeros((1, 2)) problem.evalObjConGradient(x, g, A) print('The design variables: ', x[:]) print('The multipliers: ', z[:]) print('The objective gradient: ', g[:]) print('The constraint gradient: ', A[:]) ax = fig.axes[0] ax.set_aspect('equal', 'box') plt.legend()
'use_backtracking_alpha': True, 'output_level': 1, 'max_major_iters': 1000 } # use trust region algorithm if use_tr: options = { 'algorithm': 'tr', 'qn_type': 'bfgs', 'abs_res_tol': 1e-8, 'output_level': 0, 'use_backtracking_alpha': True, 'max_major_iters': 100, 'tr_init_size': 0.1, 'tr_min_size': 1e-6, 'tr_max_size': 1.0, 'tr_eta': 0.25, 'penalty_gamma': 1.0, 'tr_adaptive_gamma_update': True, 'tr_penalty_gamma_max': 1e5, 'tr_penalty_gamma_min': 1e-5, 'tr_max_iterations': 500, 'use_line_search': False } polygon = Polygon(args.n) polygon.checkGradients() opt = ParOpt.Optimizer(polygon, options) opt.optimize()
def solve_problem(n, ndv, N, rho, filename=None, use_quadratic_approx=True, verify=False): problem = SpectralAggregate(n, ndv, rho=rho) if verify: x0 = np.random.uniform(size=ndv) problem.verify_derivatives(x0) options = { 'algorithm': 'tr', 'tr_init_size': 0.05, 'tr_min_size': 1e-6, 'tr_max_size': 10.0, 'tr_eta': 0.1, 'tr_output_file': os.path.splitext(filename)[0] + '.tr', 'tr_penalty_gamma_max': 1e6, 'tr_adaptive_gamma_update': True, 'tr_infeas_tol': 1e-6, 'tr_l1_tol': 5e-4, 'tr_linfty_tol': 5e-4, 'tr_max_iterations': 200, 'output_level': 2, 'penalty_gamma': 10.0, 'qn_subspace_size': 10, 'qn_type': 'bfgs', 'abs_res_tol': 1e-8, 'output_file': filename, 'starting_point_strategy': 'affine_step', 'barrier_strategy': 'monotone', 'start_affine_multiplier_min': 0.01 } if use_quadratic_approx: options['qn_subspace_size'] = 0 options['qn_type'] = 'none' opt = ParOpt.Optimizer(problem, options) if use_quadratic_approx: # Create the BFGS approximation qn = ParOpt.LBFGS(problem, subspace=10) # Create the quadratic eigenvalue approximation object approx = ParOptEig.CompactEigenApprox(problem, N) # Set up the corresponding quadratic approximation, specifying the index # of the eigenvalue constraint eig_qn = ParOptEig.EigenQuasiNewton(qn, approx, index=0) # Set up the eigenvalue optimization subproblem subproblem = ParOptEig.EigenSubproblem(problem, eig_qn) subproblem.setUpdateEigenModel(problem.updateModel) opt.setTrustRegionSubproblem(subproblem) opt.optimize() # Get the optimized point from the trust-region subproblem x, z, zw, zl, zu = opt.getOptimizedPoint() print('max(x) = %15.6e' % (np.max(x[:]))) print('avg(x) = %15.6e' % (np.average(x[:]))) print('sum(x) = %15.6e' % (np.sum(x[:]))) if verify: for h in [1e-6, 1e-7, 1e-8, 1e-9, 1e-10]: problem.checkGradients(h) problem.verify_derivatives(x[:], h) return x
def solve_problem(eigs, filename=None, data_type='orthogonal', use_tr=False): # Create a random orthogonal Q vector if data_type == 'orthogonal': B = np.random.uniform(size=(n, n)) Q, s, v = np.linalg.svd(B) # Create a random Affine matrix Affine = create_random_spd(eigs) else: Q = np.random.uniform(size=(n, n)) Affine = np.diag(1e-3 * np.ones(n)) # Create the random right-hand-side b = np.random.uniform(size=n) # Create the constraint data Acon = np.random.uniform(size=n) bcon = 0.25 * np.sum(Acon) # Create the convex problem problem = ConvexProblem(Q, Affine, b, Acon, bcon) options = { 'algorithm': 'ip', 'abs_res_tol': 1e-8, 'starting_point_strategy': 'affine_step', 'barrier_strategy': 'monotone', 'start_affine_multiplier_min': 0.01, 'penalty_gamma': 1000.0, 'qn_subspace_size': 10, 'qn_type': 'bfgs', 'output_file': filename } if use_tr: options = { 'algorithm': 'tr', 'tr_init_size': 0.05, 'tr_min_size': 1e-6, 'tr_max_size': 10.0, 'tr_eta': 0.25, 'tr_adaptive_gamma_update': True, 'tr_max_iterations': 200, 'penalty_gamma': 10.0, 'qn_subspace_size': 10, 'qn_type': 'bfgs', 'abs_res_tol': 1e-8, 'output_file': filename, 'tr_output_file': os.path.splitext(filename)[0] + '.tr', 'starting_point_strategy': 'affine_step', 'barrier_strategy': 'monotone', 'start_affine_multiplier_min': 0.01 } opt = ParOpt.Optimizer(problem, options) # Set a new starting point opt.optimize() x, z, zw, zl, zu = opt.getOptimizedPoint() return x