import MySQLdb as mdb #from common import parseConfig from parseConfig import parseConfig config = parseConfig('opsweb.conf', 'mysqld') conn = mdb.connect( host = config['host'], user = config['user'], passwd = config['password'], db = config['db'], charset = config['charset'] ) cursor = conn.cursor() conn.autocommit(1) def execute_sql(sql): return cursor.execute(sql) def select_all_result(sql): cursor.execute(sql) return cursor.fetchall()
Created on Thu May 7 09:13:52 2020 @author: alex """ from __future__ import absolute_import from matplotlib import pyplot as plt # from keras.optimizers import SGD from clodsa.augmentors.augmentorFactory import createAugmentor from clodsa.transformers.transformerFactory import transformerGenerator from clodsa.techniques.techniqueFactory import createTechnique from clodsa.utils.minivgg import MiniVGGNet import cv2 import parseConfig ### config = parseConfig.parseConfig("config_augmentImages.json") augmentor = createAugmentor(config["problem"], config["annotationMode"], config["outputMode"], config["generationMode"], config["inputPath"], {"outputPath": config["outputPath"]}) transformer = transformerGenerator(config["problem"]) ### # Load the techniques and add them to the augmentor techniques = [ createTechnique(technique, param) for (technique, param) in config["augmentationTechniques"] ] i = 0
# Wait for a connection #print >>sys.stderr, 'waiting for a connection' try: connection, client_address = sock.accept() except: return None #print >>sys.stderr, 'connection from', client_address # make connection nonblocking connection.settimeout(0) return connection # get parameters from the config file name, ports, useAccel, useLight, useADC, useWeather, numRelayStat, fileLengthSec, fileLengthDay, DeploymentID, DeploymentToken, networkNum, notiTime = parseConfig() PORT = 9000 FeatureList = ("timestamp_1,timestamp_2," +"x_mean,x_median,x_max,x_var,x_rms,x_IQR,x_meanXrate,x_meanDiff,x_maxDiff,x_teager_mean,x_teager_std," +"x_teager_max,x_fft_0_1_max,x_fft_mean_0_1,x_fft_1_3_max,x_fft_mean_1_3,x_fft_3_10_max,x_fft_mean_3_10," +"y_mean,y_median,y_max,y_var,y_rms,y_IQR,y_meanXrate,y_meanDiff,y_maxDiff,y_teager_mean,y_teager_std," +"y_teager_max,y_fft_0_1_max,y_fft_mean_0_1,y_fft_1_3_max,y_fft_mean_1_3,y_fft_3_10_max,y_fft_mean_3_10," +"z_mean,z_median,z_max,z_var,z_rms,z_IQR,z_meanXrate,z_meanDiff,z_maxDiff,z_teager_mean,z_teager_std," +"z_teager_max,z_fft_0_1_max,z_fft_mean_0_1,z_fft_1_3_max,z_fft_mean_1_3,z_fft_3_10_max,z_fft_mean_3_10," +"mag_mean,mag_median,mag_max,mag_var,mag_rms,mag_IQR,mag_meanXrate,mag_meanDiff,mag_maxDiff,mag_teager_mean,mag_teager_std," +"mag_teager_max,mag_fft_0_1_max,mag_fft_mean_0_1,mag_fft_1_3_max,mag_fft_mean_1_3,mag_fft_3_10_max,mag_fft_mean_3_10," +"corr_xy,corr_xz,corr_yz" +"\n")
""" Created on Thu May 7 09:13:52 2020 @author: alex """ from __future__ import absolute_import from matplotlib import pyplot as plt # from keras.optimizers import SGD from clodsa.augmentors.augmentorFactory import createAugmentor from clodsa.transformers.transformerFactory import transformerGenerator from clodsa.techniques.techniqueFactory import createTechnique from clodsa.utils.minivgg import MiniVGGNet import cv2 import parseConfig config = parseConfig.parseConfig("cats_dogs_folder_folder_linear.json") augmentor = createAugmentor(config["problem"],config["annotationMode"],config["outputMode"],config["generationMode"],config["inputPath"], {"outputPath":config["outputPath"]}) transformer = transformerGenerator(config["problem"]) # Load the techniques and add them to the augmentor techniques = [createTechnique(technique,param) for (technique,param) in config["augmentationTechniques"]] print("Number of images in input folder") !ls /home/alex/anaconda3/envs/DD2424-project/DD2424---Project-Covid-19/git/datasets/images | wc -l img = {} img["original"] = cv2.imread(config["inputPath"] + "images/cat_1.jpg")