Exemple #1
0
if __name__ == '__main__':
    n_cluster = 0
    if len(sys.argv) > 1:
        n_cluster = int(sys.argv[1])
    print 'loading data'

    with open('deep_feature.pickle', 'rb') as handle:
        NNdict = pickle.load(handle)
    with open('pca_feature.pickle', 'rb') as handle:
        PCAdict = pickle.load(handle)

    #all_data, labeled_data,unlabeled_data,label_unique_list,all_label, labeled_label,all_sample_ID,labeled_sample_ID,unlabeled_sample_ID,gene_names=parse_data.load_integrated_data('data/TPM_mouse_1_4_6_7_8_10_16.txt', whitening=True)
    #all_data, labeled_data,unlabeled_data,label_unique_list,all_label, labeled_label, all_weights, labeled_weights, unlabeled_weights,all_sample_ID,labeled_sample_ID,unlabeled_sample_ID,gene_names=parse_data.load_integrated_data('data/TPM_mouse_1_4_6_7_8_10_16.txt',sample_normalize=True,gene_normalize=True)
    all_data, labeled_data, unlabeled_data, label_unique_list, all_label, labeled_label, all_weights, labeled_weights, unlabeled_weights, all_sample_ID, labeled_sample_ID, unlabeled_sample_ID, gene_names = parse_data.load_integrated_data(
        'data/TPM_mouse_1_4_6_7_8_10_16.txt',
        sample_normalize=True,
        gene_normalize=True)
    #all_data, labeled_data,unlabeled_data,label_unique_list,all_label, labeled_label, all_weights, labeled_weights, unlabeled_weights,all_sample_ID,labeled_sample_ID,unlabeled_sample_ID,gene_names=parse_data.load_integrated_data('data/TPM_mouse_1_4_6_7_8_10_16.txt',whitening=False)
    #Label=labeled_label
    Label = labeled_label

    #bench_k_means(KMeans(init='k-means++', n_clusters=n_digits, n_init=10),

    if n_cluster == 0:
        n_cluster = max(Label)
    print 'n_cluster=', n_cluster
    #nlabels=[]
    #nlabels.append(max(Label))
    n_iter = 10
    estimators = []
    est_name = []
Exemple #2
0
    '''
    #data_file_name='../data/TPM_mouse_1_4_6_7_8_10_16.txt'
    data_file_name = 'important_file/TPM_mouse_7_8_10_PPITF_gene_9437.txt'
    if args.data_file is not None:
        data_file_name = args.data_file
    #if 'boot' in args.neural_network:
    #    append_ID='_'+args.neural_network.split('_')[-1].split('.')[0]
    #else:
    #    append_ID=''
    if args.identification is not None:
        append_ID = '_' + args.identification
    else:
        append_ID = ''
    all_data, labeled_data, unlabeled_data, label_unique_list, all_label, labeled_label, all_weights, labeled_weights, unlabeled_weights, all_sample_ID, labeled_sample_ID, unlabeled_sample_ID, gene_names = parse_data.load_integrated_data(
        data_file_name,
        sample_normalize=args.sample_normalize,
        gene_normalize=args.gene_normalize,
        log_trans=args.log_trans,
        ref_gene_file=args.reference_gene_file)  #'cluster_genes.txt'
    all_data_sn1_gn0, _, _, _, _, _, _, _, _, _, _, _, _ = parse_data.load_integrated_data(
        data_file_name,
        sample_normalize=1,
        gene_normalize=0,
        ref_gene_file=args.reference_gene_file)  #'cluster_genes.txt'
    fit_data = all_data
    transform_data = all_data

    #print 'all_data.shape: ', all_data.shape

    #all_data=all_data[:100,:200]

    if args.fit == 'labeled':