Exemple #1
0
    def test_something(self):
        grammar, r1, r2 = self.build_grammar()
        nont_map = Enumerator()
        grammarInfo = PyGrammarInfo(grammar, nont_map)

        def w(x):
            return "S", x

        rtg = RTG(w(3))
        rtg.construct_and_add_rule(w(3), r1, [w(1), w(2)])
        rtg.construct_and_add_rule(w(3), r1, [w(2), w(1)])
        rtg.construct_and_add_rule(w(2), r1, [w(1), w(1)])
        rtg.construct_and_add_rule(w(1), r2, [])

        rtg2 = RTG(("A", 3))

        rtg3 = RTG(w(3))
        rtg3.construct_and_add_rule(w(3), r1, [w(1), w(2)])
        rtg3.construct_and_add_rule(w(3), r1, [w(2), w(1)])
        rtg3.construct_and_add_rule(w(2), r2, [w(1), w(1)])
        rtg3.construct_and_add_rule(w(1), r2, [])

        traces = PyDerivationManager(grammar, nont_map)
        traces.convert_rtgs_to_hypergraphs([rtg, rtg2, rtg3])

        self.assertTrue(
            traces.is_consistent_with_grammar(grammarInfo, traceId=0))
        self.assertFalse(
            traces.is_consistent_with_grammar(grammarInfo, traceId=1))
        self.assertFalse(
            traces.is_consistent_with_grammar(grammarInfo, traceId=2))
Exemple #2
0
    def test_negra_to_dag_parsing(self):
        names = list(map(str, [26954]))

        fd_, primary_file = tempfile.mkstemp(suffix='.export')
        with open(primary_file, mode='w') as pf:

            for s in names:
                dsg = tp.sentence_names_to_deep_syntax_graphs(
                    ["s" + s],
                    "res/tiger/tiger_s%s.xml" % s,
                    hold=False,
                    ignore_puntcuation=False)[0]
                dsg.set_label(dsg.label[1:])
                lines = np.serialize_hybrid_dag_to_negra(
                    [dsg], 0, 500, use_sentence_names=True)
                print(''.join(lines), file=pf)

        _, binarized_file = tempfile.mkstemp(suffix='.export')
        subprocess.call([
            "discodop", "treetransforms", "--binarize", "-v", "1", "-h", "1",
            primary_file, binarized_file
        ])

        print(primary_file)
        print(binarized_file)

        corpus = np.sentence_names_to_hybridtrees(names,
                                                  primary_file,
                                                  secedge=True)
        corpus2 = np.sentence_names_to_hybridtrees(names,
                                                   binarized_file,
                                                   secedge=True)
        dag = corpus[0]
        print(dag)

        assert isinstance(dag, HybridDag)
        self.assertEqual(8, len(dag.token_yield()))
        for token in dag.token_yield():
            print(token.form() + '/' + token.pos(), end=' ')
        print()

        dag_bin = corpus2[0]
        print(dag_bin)

        for token in dag_bin.token_yield():
            print(token.form() + '/' + token.pos(), end=' ')
        print()
        self.assertEqual(8, len(dag_bin.token_yield()))

        for node, token in zip(
                dag_bin.nodes(),
                list(map(str, map(dag_bin.node_token, dag_bin.nodes())))):
            print(node, token)

        print()
        print(top(dag_bin, {'500', '101', '102'}))
        self.assertSetEqual({'101', '500'}, top(dag_bin,
                                                {'500', '101', '102'}))
        print(bottom(dag_bin, {'500', '101', '102'}))
        self.assertSetEqual({'502'}, bottom(dag_bin, {'500', '101', '102'}))

        nont_labeling = BasicNonterminalLabeling()
        term_labeling = FormTerminals()  # PosTerminals()

        grammar = direct_extract_lcfrs_from_prebinarized_corpus(
            dag_bin, term_labeling, nont_labeling)
        # print(grammar)

        for rule in grammar.rules():
            print(rule.get_idx(), rule)

        print("Testing LCFRS parsing and DCP evaluation".center(80, '='))

        parser = LCFRS_parser(grammar)

        parser_input = term_labeling.prepare_parser_input(
            dag_bin.token_yield())
        print(parser_input)
        parser.set_input(parser_input)

        parser.parse()

        self.assertTrue(parser.recognized())

        der = parser.best_derivation_tree()
        print(der)

        dcp_term = DCP_evaluator(der).getEvaluation()

        print(dcp_term[0])

        dag_eval = HybridDag(dag_bin.sent_label())
        dcp_to_hybriddag(dag_eval,
                         dcp_term,
                         copy.deepcopy(dag_bin.token_yield()),
                         False,
                         construct_token=construct_constituent_token)

        print(dag_eval)
        for node in dag_eval.nodes():
            token = dag_eval.node_token(node)
            if token.type() == "CONSTITUENT-CATEGORY":
                label = token.category()
            elif token.type() == "CONSTITUENT-TERMINAL":
                label = token.form(), token.pos()

            print(node, label, dag_eval.children(node),
                  dag_eval.sec_children(node), dag_eval.sec_parents(node))

        lines = np.serialize_hybridtrees_to_negra([dag_eval],
                                                  1,
                                                  500,
                                                  use_sentence_names=True)
        for line in lines:
            print(line, end='')

        print()

        with open(primary_file) as pcf:
            for line in pcf:
                print(line, end='')

        print('Testing reduct computation with Schick parser'.center(80, '='))

        grammar_path = '/tmp/lcfrs_dcp_grammar.gr'
        derivation_manager = PyDerivationManager(grammar)

        with open(grammar_path, 'w') as grammar_file:
            nonterminal_enc, terminal_enc = linearize(
                grammar,
                nont_labeling,
                term_labeling,
                grammar_file,
                delimiter=' : ',
                nonterminal_encoder=derivation_manager.get_nonterminal_map())

        print(np.negra_to_json(dag, terminal_enc, term_labeling))
        json_data = np.export_corpus_to_json([dag], terminal_enc,
                                             term_labeling)

        corpus_path = '/tmp/json_dags.json'
        with open(corpus_path, 'w') as data_file:
            json.dump(json_data, data_file)

        reduct_dir = '/tmp/schick_parser_reducts'
        if os.path.isdir(reduct_dir):
            shutil.rmtree(reduct_dir)
        os.makedirs(reduct_dir)

        p = subprocess.Popen([
            ' '.join([
                "java", "-jar",
                os.path.join("util",
                             SCHICK_PARSER_JAR), 'reduct', '-g', grammar_path,
                '-t', corpus_path, "--input-format", "json", "-o", reduct_dir
            ])
        ],
                             shell=True,
                             stdout=subprocess.PIPE,
                             stderr=subprocess.STDOUT)
        print("stdout", p.stdout.name)

        while True:
            nextline = p.stdout.readline()
            if nextline == b'' and p.poll() is not None:
                break
            print(nextline.decode('unicode_escape'), end='')
            # sys.stdout.write(nextline)
            # sys.stdout.flush()

        p.wait()
        p.stdout.close()
        self.assertEqual(0, p.returncode)
        rtgs = []

        def decode_nonterminals(s):
            return derivation_manager.get_nonterminal_map().index_object(
                int(s))

        for i in range(1, len(corpus) + 1):
            rtgs.append(
                read_rtg(os.path.join(reduct_dir,
                                      str(i) + '.gra'),
                         symbol_offset=-1,
                         rule_prefix='r',
                         process_nonterminal=decode_nonterminals))

        print("Reduct RTG")
        for rule in rtgs[0].rules:
            print(rule.lhs, "->", rule.symbol, rule.rhs)

        derivation_manager.get_nonterminal_map().print_index()
        derivation_manager.convert_rtgs_to_hypergraphs(rtgs)
        derivation_manager.serialize(
            bytes('/tmp/reduct_manager.trace', encoding='utf8'))
        derivations = [
            LCFRSDerivationWrapper(der)
            for der in derivation_manager.enumerate_derivations(0, grammar)
        ]
        self.assertGreaterEqual(len(derivations), 1)

        if len(derivations) >= 1:
            print("Sentence", i)
            for der in derivations:
                print(der)
                self.assertTrue(
                    der.check_integrity_recursive(der.root_id(),
                                                  grammar.start()))
    def test_json_corpus_grammar_export(self):
        start = 1
        stop = 50
        # path = "res/tiger/tiger_release_aug07.corrected.16012013.utf8.xml"
        path = "res/tiger/tiger_8000.xml"
        exclude = []
        dsgs = sentence_names_to_deep_syntax_graphs(
            ['s' + str(i) for i in range(start, stop + 1) if i not in exclude]
            , path
            , hold=False)

        rec_part_strategy = the_recursive_partitioning_factory().get_partitioning('cfg')[0]

        def label_edge(edge):
            if isinstance(edge.label, ConstituentTerminal):
                return edge.label.pos()
            else:
                return edge.label

        nonterminal_labeling = lambda nodes, dsg: simple_labeling(nodes, dsg, label_edge)

        term_labeling_token = PosTerminals()

        def term_labeling(token):
            if isinstance(token, ConstituentTerminal):
                return term_labeling_token.token_label(token)
            else:
                return token

        grammar = induction_on_a_corpus(dsgs, rec_part_strategy, nonterminal_labeling, term_labeling)
        grammar.make_proper()

        terminals = Enumerator()

        data = export_dog_grammar_to_json(grammar, terminals)
        grammar_path = '/tmp/json_grammar.json'
        with open(grammar_path, 'w') as file:
            json.dump(data, file)

        corpus_path = '/tmp/json_corpus.json'
        with open(corpus_path, 'w') as file:
            json.dump(export_corpus_to_json(dsgs, terminals, terminal_labeling=term_labeling), file)

        with open('/tmp/enumerator.enum', 'w') as file:
            terminals.print_index(file)

        reduct_dir = '/tmp/reduct_grammars'
        if os.path.isdir(reduct_dir):
            shutil.rmtree(reduct_dir)
        os.makedirs(reduct_dir)
        p = subprocess.Popen([' '.join(
            ["java", "-jar", os.path.join("util", SCHICK_PARSER_JAR), 'dog-reduct', '-g', grammar_path, '-t',
             corpus_path, "-o", reduct_dir])], shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)

        print("stdout", p.stdout.name)

        while True:
            nextline = p.stdout.readline()
            if nextline == b'' and p.poll() is not None:
                break
            print(nextline.decode('unicode_escape'), end='')
            # sys.stdout.write(nextline)
            # sys.stdout.flush()

        p.wait()
        p.stdout.close()
        self.assertEqual(0, p.returncode)

        rtgs = []
        for i in range(1, len(dsgs) + 1):
            rtgs.append(read_rtg('/tmp/reduct_grammars/' + str(i) + '.gra'))

        derivation_manager = PyDerivationManager(grammar)
        derivation_manager.convert_rtgs_to_hypergraphs(rtgs)
        derivation_manager.serialize(bytes('/tmp/reduct_manager.trace', encoding='utf8'))

        f = lambda token: token.pos() if isinstance(token, ConstituentTerminal) else token

        for i, (rtg, dsg) in enumerate(zip(rtgs, dsgs)):
            derivations = [LCFRSDerivationWrapper(der) for der in derivation_manager.enumerate_derivations(i, grammar)]
            self.assertGreaterEqual(len(derivations), 1)
            if len(derivations) > 1:
                print("Sentence", i)
                for der in derivations:
                    print(der)

            for der in derivations:
                dog, sync = dog_evaluation(der)
                dsg2 = DeepSyntaxGraph(der.compute_yield(), dog, sync)
                dsg.dog.project_labels(f)
                dsg.sentence = list(map(f, dsg.sentence))
                self.assertEqual(dsg.sentence, dsg2.sentence)
                morphs = dsg.dog.compute_isomorphism(dsg2.dog)
                self.assertFalse(morphs is None)
                self.assertListEqual([[morphs[0].get(node, node) for node in syncs]
                                      for syncs in dsg.synchronization], dsg2.synchronization)
        pass
def run_experiment(rec_part_strategy,
                   nonterminal_labeling,
                   exp,
                   reorder_children,
                   binarize=True):
    start = 1
    stop = 7000

    test_start = 7001
    test_stop = 7200

    # path = "res/tiger/tiger_release_aug07.corrected.16012013.utf8.xml"
    corpus_path = "res/tiger/tiger_8000.xml"
    exclude = []
    train_dsgs = sentence_names_to_deep_syntax_graphs(
        ['s' + str(i) for i in range(start, stop + 1) if i not in exclude],
        corpus_path,
        hold=False,
        reorder_children=reorder_children)
    test_dsgs = sentence_names_to_deep_syntax_graphs(
        [
            's' + str(i)
            for i in range(test_start, test_stop + 1) if i not in exclude
        ],
        corpus_path,
        hold=False,
        reorder_children=reorder_children)

    # Grammar induction
    term_labeling_token = PosTerminals()

    def term_labeling(token):
        if isinstance(token, ConstituentTerminal):
            return term_labeling_token.token_label(token)
        else:
            return token

    if binarize:

        def modify_token(token):
            if isinstance(token, ConstituentCategory):
                token_new = deepcopy(token)
                token_new.set_category(token.category() + '-BAR')
                return token_new
            elif isinstance(token, str):
                return token + '-BAR'
            else:
                assert False

        train_dsgs = [
            dsg.binarize(bin_modifier=modify_token) for dsg in train_dsgs
        ]

        def is_bin(token):
            if isinstance(token, ConstituentCategory):
                if token.category().endswith('-BAR'):
                    return True
            elif isinstance(token, str):
                if token.endswith('-BAR'):
                    return True
            return False

        def debinarize(dsg):
            return dsg.debinarize(is_bin=is_bin)

    else:
        debinarize = id

    grammar = induction_on_a_corpus(train_dsgs, rec_part_strategy,
                                    nonterminal_labeling, term_labeling)
    grammar.make_proper()

    print("Nonterminals", len(grammar.nonts()), "Rules", len(grammar.rules()))

    parser = GFParser_k_best(grammar, k=500)
    return do_parsing(parser,
                      test_dsgs,
                      term_labeling_token,
                      oracle=True,
                      debinarize=debinarize)

    # Compute reducts, i.e., intersect grammar with each training dsg
    basedir = path.join('/tmp/dog_experiments', 'exp' + str(exp))
    reduct_dir = path.join(basedir, 'reduct_grammars')

    terminal_map = Enumerator()
    if not os.path.isdir(basedir):
        os.makedirs(basedir)
    data = export_dog_grammar_to_json(grammar, terminal_map)
    grammar_path = path.join(basedir, 'grammar.json')
    with open(grammar_path, 'w') as file:
        json.dump(data, file)

    corpus_path = path.join(basedir, 'corpus.json')
    with open(corpus_path, 'w') as file:
        json.dump(
            export_corpus_to_json(train_dsgs,
                                  terminal_map,
                                  terminal_labeling=term_labeling), file)

    with open(path.join(basedir, 'enumerator.enum'), 'w') as file:
        terminal_map.print_index(file)

    if os.path.isdir(reduct_dir):
        shutil.rmtree(reduct_dir)
    os.makedirs(reduct_dir)
    p = subprocess.Popen([
        ' '.join([
            "java", "-jar",
            os.path.join("util", SCHICK_PARSER_JAR), 'dog-reduct', '-g',
            grammar_path, '-t', corpus_path, "-o", reduct_dir
        ])
    ],
                         shell=True,
                         stdout=subprocess.PIPE,
                         stderr=subprocess.STDOUT)

    while True:
        nextline = p.stdout.readline()
        if nextline == '' and p.poll() is not None:
            break
        sys.stdout.write(nextline)
        sys.stdout.flush()

    p.wait()
    p.stdout.close()

    rtgs = []
    for i in range(1, len(train_dsgs) + 1):
        rtgs.append(read_rtg(path.join(reduct_dir, str(i) + '.gra')))

    derivation_manager = PyDerivationManager(grammar)
    derivation_manager.convert_rtgs_to_hypergraphs(rtgs)
    derivation_manager.serialize(path.join(basedir, 'reduct_manager.trace'))

    # Training
    ## prepare EM training
    em_epochs = 20
    seed = 0
    smoothing_factor = 0.01
    split_randomization = 0.01
    sm_cycles = 2
    merge_percentage = 50.0
    grammarInfo = PyGrammarInfo(grammar,
                                derivation_manager.get_nonterminal_map())
    storageManager = PyStorageManager()

    em_builder = PySplitMergeTrainerBuilder(derivation_manager, grammarInfo)
    em_builder.set_em_epochs(em_epochs)
    em_builder.set_simple_expector(threads=THREADS)
    emTrainer = em_builder.build()

    # randomize initial weights and do em training
    la_no_splits = build_PyLatentAnnotation_initial(grammar, grammarInfo,
                                                    storageManager)
    la_no_splits.add_random_noise(seed=seed)
    emTrainer.em_train(la_no_splits)
    la_no_splits.project_weights(grammar, grammarInfo)

    do_parsing(CFGParser(grammar), test_dsgs, term_labeling_token)
    return
    ## prepare SM training
    builder = PySplitMergeTrainerBuilder(derivation_manager, grammarInfo)
    builder.set_em_epochs(em_epochs)
    builder.set_split_randomization(1.0, seed + 1)
    builder.set_simple_expector(threads=THREADS)
    builder.set_smoothing_factor(smoothingFactor=smoothing_factor)
    builder.set_split_randomization(percent=split_randomization)
    # builder.set_scc_merger(-0.2)
    builder.set_percent_merger(merge_percentage)
    splitMergeTrainer = builder.build()

    # splitMergeTrainer.setMaxDrops(validationDropIterations, mode="smoothing")
    splitMergeTrainer.setEMepochs(em_epochs, mode="smoothing")

    # set initial latent annotation
    latentAnnotation = [la_no_splits]

    # carry out split/merge training and do parsing
    parsing_method = "filter-ctf"
    # parsing_method = "single-best-annotation"
    k_best = 50
    for i in range(1, sm_cycles + 1):
        splitMergeTrainer.reset_random_seed(seed + i + 1)
        latentAnnotation.append(
            splitMergeTrainer.split_merge_cycle(latentAnnotation[-1]))
        print("Cycle: ", i)
        if parsing_method == "single-best-annotation":
            smGrammar = latentAnnotation[i].build_sm_grammar(
                grammar, grammarInfo, rule_pruning=0.0001, rule_smoothing=0.1)
            print("Rules in smoothed grammar: ", len(smGrammar.rules()))
            parser = GFParser(smGrammar)
        elif parsing_method == "filter-ctf":
            latentAnnotation[-1].project_weights(grammar, grammarInfo)
            parser = Coarse_to_fine_parser(
                grammar,
                latentAnnotation[-1],
                grammarInfo,
                derivation_manager.get_nonterminal_map(),
                base_parser_type=GFParser_k_best,
                k=k_best)
        else:
            raise (Exception())
        do_parsing(parser, test_dsgs, term_labeling_token)
        del parser