def readquipsim(filename): """ Read QUIPSIM output file using L{parser} module. This creates a list of logical L{Qubit}s and a list of L{Operation}s, replaces 'Ent' operations and returns them. @type filename: string @param filename: QUIPSIM output filename, for the format, check L{parser}. @rtype: (list of L{Qubit}, list of L{Operation}) @return: The tuple of the list of the logical L{Qubit}s and the list of the logical L{Operation}s. """ qubits,operations = parser.read_file(filename) printwell(operations,'operations before encoding') parser.replace_ent(operations) # printwell(operations,'operations after replacing ent') return qubits,operations
def main(): graph = parser.read_file('Instances/instance1.txt') objective_function, m = model.solve(graph) model.print_used_vars(m) print("Objective Function: " + str(objective_function))
def process_task(n): base = f"../solutions_gold/prob-{n:03}.meta.yaml" base_yaml = read_yaml(base) best_time = base_yaml["time"] result = {} result["gold"] = base_yaml["time"] result["task"] = n # read buy db and find the best result for each buy best = {} folder = f"../buy_db/task{n}/" files = os.listdir(folder) max_score = None for f in sorted(files): s = re.match("(\d+).meta.yaml", f) if s: current_yaml = read_yaml(folder + f) if not current_yaml: continue buy = current_yaml["buy"] if buy not in ALLOWED_BUYS: continue if max_score is None: max_score = current_yaml["max_score"] if buy in BEST_TIME_BUYS: best_time = min(best_time, current_yaml["time"]) take = False if buy not in best: take = True else: prev = best[buy] if prev["time"] > current_yaml["time"]: take = True if take: item = {} item["time"] = current_yaml["time"] item["spent"] = current_yaml["spent"] best[buy] = item result["buys"] = best result["max_score"] = max_score result["best_time_for_roi"] = best_time # read submissions and fill what was submitted sent_buy_file = f"../best_buy/prob-{n:03}.buy" selected_buy = "" if os.path.isfile(sent_buy_file): selected_buy = read_file(sent_buy_file).strip('\n') if selected_buy == "": if result["gold"] < result["buys"][""]["time"]: selected_buy = "gold" result["selected"] = selected_buy # update ROI for each buy for _, item in result["buys"].items(): update_roi(result["gold"], max_score, best_time, item) return result
def main(): n, p, h, f, d = parser.read_file('Instances/instance1.txt') objective_function, m = model.solve(n, p, h, f, d) print("Objective Function: " + str(objective_function))
def main(): n, m, c, a, b, f = parser.read_file('Instances/instance1.txt') objective_function, model_created = model.solve(n, m, c, a, b, f) model.print_used_vars(model_created) print("Objective Function: " + str(objective_function))
def verify_solution_file(problem_file, solution_file): problem = read_file(problem_file) solution = read_file(solution_file) return verify_solution(problem, solution)
if __name__ == '__main__': in_dir_path = os.path.abspath( os.path.join( os.path.dirname(os.path.dirname(os.path.realpath(__file__))), 'input')) out_dir_path = os.path.abspath( os.path.join( os.path.dirname(os.path.dirname(os.path.realpath(__file__))), 'TourfileA')) inputFiles = parser.get_input_files('input') for file in inputFiles: input_url = os.path.join(in_dir_path, file) output_url = os.path.join(out_dir_path, "tour" + file) queue = parser.read_file(input_url) citiesNo = parser.next_number(queue) matrix = [[0 for x in range(citiesNo)] for y in range(citiesNo)] parser.populate_matrix(citiesNo, queue, matrix) tour, length = iterated_sa(matrix, 100) if sorted(tour) != list(range(len(tour))): raise Exception("Misformed tour") f = open(output_url, "w") f.write("NAME = " + file[:-4] + ",\n") f.write("TOURSIZE = " + str(len(tour)) + ",\n") f.write("LENGTH = " + str(length) + ",\n") f.write(", ".join(map(str, [x + 1 for x in tour]))) f.close() print(input_url) # print(tour) # print(length)
def main(): # returns: duration, intersections, streets, score, streets_dict, cars_arr files = ["a", "b", "c", "d", "e", "f"] for file in files: duration, num_intersections, num_streets, num_cars, score, streets_dict, cars_arr = read_file(file) #intersections(streets_dict, num_intersections) # car starts at end of first street # needs to cover the rest of the streets cars_arr = priority_routes(cars_arr, streets_dict) #print(f"cars are {cars_arr}") # write to the result file write_file(file, schedule(intersections(streets_dict, num_intersections)))
import asyncio from random import choice from slugify import slugify import config from parser import WorkUaParser, HHRUParser, RabotaUAParser, read_file __author__ = 'bzdvdn' Bot = telebot.TeleBot(config.token) Bot.remove_webhook() print(Bot.get_me()) useragent = {'User-Agent': choice(read_file('useragent.txt'))} def delete_file(filename): os.remove(filename) @Bot.message_handler(commands=['help']) def handle_text(message): Bot.send_message( message.chat.id, """ Этот бот парсит сайты(work.ua, rabota.ua, hh.ru): на предмет поиска работы и выводит вам doc файл. команды /work_ua, /hh_ru, /rabota_ua после нажатия команд нееобходимо выбрать город/страну из предложенных на клавиатуре и дальше выбрать критерий поиска: Например 'Python'
def main(): n = parser.read_file("Instances/instance1.txt") objective_function, m = model.solve(n) print("Objective Function: " + str(objective_function))
if task_spec: for b in task_spec.boosters: img.putpixel((b[1][0], self.size - 1 - b[1][1]), (255, 255, 255)) # img = img.resize((1000, 1000), Image.BILINEAR) scale = int(500 / self.size) img = img.resize((scale * self.size, scale * self.size)) img.show() img.save(f"images/{self.counter}.png") self.counter += 1 # input("waiting >") draw = len(sys.argv) > 3 file = sys.argv[1] fout = sys.argv[2] s = read_file(file) spec = PuzzleSpec(s) solver = PuzzleSolver(spec, draw) task_spec = solver.solve() write_problem(fout, task_spec) world = parse_problem(read_file(sys.argv[2])) valid = puzzle_valid(spec, world) print("valid", valid) if not valid: sys.exit(1)