Exemple #1
0
def retrieve_hosp_data():
    countries = parse_countries(2)
    hospData = {}
    
    # For now, always get the data from yesterday. We could make fancier check if today's data is already available
    file_name, headers = urlretrieve(URL_Hosp)

    workbook = xlrd.open_workbook(file_name)

    worksheet = workbook.sheet_by_name('Data (table)')
    i = 0
    Ix = {}
    for c in worksheet.row_values(0):
        Ix[c] = i
        i += 1
    for row_index in range(1, worksheet.nrows):
        row = worksheet.row_values(row_index)
        country = row[Ix['COUNTRY_REGION']]
        if country in countries:
            country = countries[country]
        else:
            #print(f'could not find country {country}')
            continue
        hospData[country] = {'hospitalBeds': stoi(row[Ix['VALUE']]), 'srcHospitalBeds': 'WHO Hospital data from https://gateway.euro.who.int/en/indicators/hfa_479-5061-number-of-acute-care-hospital-beds/'}

    # second data set, for Asia
    with open('hospital-data/ICU_asia.tsv', 'r') as fd:
        rdr = csv.reader(fd, delimiter='\t')
        hdr = next(rdr)

        for row in rdr:
            country   = row[0].strip()
            if stoi(row[1]):
                hospData[country] = {'hospitalBeds': stoi(row[1]), 'srcHospitalBeds': URL_ICU_ASIA}

    # Eurostat, newer than from WHO (2017 vs 2015)
    with open('hospital-data/hospital_eurostat.tsv', 'r') as fd:
        rdr = csv.reader(fd, delimiter='\t')
        hdr = next(rdr)

        for row in rdr:
            country   = row[0].strip()
            if not country in hospData:
                hospData[country] = {'hospitalBeds': stoi(row[1]), 'srcHospitalBeds': URL_Hosp_Eurostat}
            else:
                #print(f'found new data for {country}: old: {hospData[country]["hospitalBeds"]}, new: {stoi(row[1])}')
                hospData[country] = {'hospitalBeds': stoi(row[1]), 'srcHospitalBeds': URL_Hosp_Eurostat}

            
    return hospData
Exemple #2
0
def retrieve_pop_data():
    countries = parse_countries(2)
    countries1 = parse_countries(1)
    countries['XKX'] = countries['RKS']
    countries1['BLM'] = countries1['BL']
    popData = {}

    file_name, headers = urlretrieve(URL_Pop)

    workbook = xlrd.open_workbook(file_name)

    worksheet = workbook.sheet_by_index(0) 

    i = 0
    Ix = {}
    for c in worksheet.row_values(0):
        Ix[c] = i
        i += 1
    for row_index in range(1, worksheet.nrows):
        row = worksheet.row_values(row_index)

        popData2018 = stoi(row[Ix['popData2018']])

        # replace country name if we have the "official" one in country_codes.csv
        country = row[Ix['countryterritoryCode']]
        if country == [] or not country:
            country = countries1[row[Ix['geoId']]]
        elif country in countries:
            country = countries[country] 
        else:
            #print(f'could not find country {country}')        
            continue
        popData[country] = {'populationServed': popData2018, 'srcPopulation': 'ECDC'}

    return popData
Exemple #3
0
def update_cia_facts(hospData, popData):
    r  = get(URL_CIA)
    if not r.ok:
        print(f"Failed to fetch {URL}", file=sys.stderr)
        exit(1)

    db = json.loads(r.text)

    countries = parse_countries(2)

    for country in db["countries"]:
        country2 = None
        matches = [r for s,r in zip([x.lower() for x in countries.values()],[x for x in countries.values()]) if country.replace("_"," ") in s]
        if len(matches) == 0:
            # manual map to compensate
            if country in ciaMap:
                country2 = ciaMap[country]
            else:
                #print(f'no match found for {country}')
                continue
        elif len(matches) == 1:
            country2 = matches[0]
        else:
            # only few cases, handle manually
            for n in matches:
                if country.replace("_"," ") == n.lower():
                    country2 = n
            if country == 'united_states':
                country2 = 'United States of America'
            elif country == 'virgin_islands':
                country2 = 'Virgin Islands (U.S.)'
            if not country2:
                print(f'{country} matches {matches}')
                continue
        if not 'people' in db['countries'][country]['data']:
            continue
        
        population = stoi(db["countries"][country]["data"]["people"]["population"]["total"])
        source = db["countries"][country]["metadata"]["source"]
        if not country2 in hospData and 'hospital_bed_density' in db['countries'][country]['data']['people']:
            hospData[country2] = {}
            hospData[country2]['hospitalBeds'] = int(population/1000*float(db['countries'][country]['data']['people']['hospital_bed_density']['beds_per_1000_population']))
            if 'date' in db['countries'][country]['data']['people']['hospital_bed_density']:
                hospData[country2]['srcHospitalBeds'] = f"Computed from {db['countries'][country]['data']['people']['hospital_bed_density']['date']} data in CIA fact book {source}"
            else:
                hospData[country2]['srcHospitalBeds'] = f"Computed from data in CIA fact book {source}"

        if not country2 in popData and 'population' in db['countries'][country]['data']['people']:
            popData[country2] = {}
            popData[country2]['populationServed'] = population
            if 'date' in db['countries'][country]['data']['people']['population']:
                popData[country2]['srcPopulation'] = f"{db['countries'][country]['data']['people']['population']['date']} data in CIA fact book {source}"
            else:
                popData[country2]['srcPopulation'] = f"Data in CIA fact book {source}"
    return hospData, popData
Exemple #4
0
def retrieve_icu_data():
    icuData = {}
    with open('hospital-data/ICU_capacity.tsv', 'r') as fd:
        rdr = csv.reader(fd, delimiter='\t')
        hdr = next(rdr)

        for row in rdr:
            country   = row[0].strip()
            icuData[country] = {'ICUBeds': stoi(row[5]), 'srcICUBeds': URL_ICU}

    # second data set, for Asia
    with open('hospital-data/ICU_asia.tsv', 'r') as fd:
        rdr = csv.reader(fd, delimiter='\t')
        hdr = next(rdr)

        for row in rdr:
            country   = row[0].strip()
            icuData[country] = {'ICUBeds': stoi(row[5]), 'srcICUBeds': URL_ICU_ASIA}
            
    return icuData
Exemple #5
0
def parse_tsv(tsv, location):
    rdr = csv.reader(tsv, delimiter='\t')
    hdr = next(rdr)
    idx = {}

    for col in cols:
        try:
            idx[col] = hdr.index(col)
        except:
            print(col, cols, hdr)
            return None, False

    data = defaultdict(list)
    for row in rdr:
        data[location].append({c:stoi(row[idx[c]]) if i > 0 else row[idx[c]] for i, c in enumerate(cols)})

    return data, True
def get_old_data():
    known = {}
    with open('populationData.tsv', 'r') as fd:
        rdr = csv.reader(fd, delimiter='\t')
        hdr = next(rdr)
        i = 0
        Ix = {}
        for c in hdr:
            Ix[c] = i
            i += 1
        for row in rdr:
            name = row[0]
            if not name in known:
                known[name] = {}
            for n in Ix:
                if n == 'name':
                    continue
                if 'name' in n or 'ageDistribution' in n or 'hemisphere' in n or 'src' in n:
                    known[name][n] = row[Ix[n]]
                else:
                    known[name][n] = stoi(row[Ix[n]])
    return known