def __init__(self): self.iteration_count = 0 self.jump_function = p2.JumpFunction() self.best_jump_function = copy.deepcopy(self.jump_function) # self.jump_function.print_board_and_objective_function() self.get_interation_count() self.perform_stochastic_local_search() self.print_best_objective_value()
def __init__(self): self.iteration_count = 0 self.probability = 0 self.jump_function = p2.JumpFunction() self.best_jump_function = copy.deepcopy(self.jump_function) self.get_interation_count() self.get_hill_descent_count() self.perform_hill_descent_with_random_uphill_steps() self.print_best_objective_value()
def __init__(self): self.iteration_count = 0 self.hill_descent_count = 0 self.jump_function = p2.JumpFunction() self.best_jump_function = copy.deepcopy(self.jump_function) self.get_interation_count() self.get_hill_descent_count() self.perform_random_restart_hill_descent() self.print_best_objective_value()
def __init__(self): self.iteration_count = 0 self.temperature = 0 self.decay_rate = 0 self.jump_function = p2.JumpFunction() self.best_jump_function = copy.deepcopy(self.jump_function) self.get_interation_count() self.get_initial_temperature() self.get_decay_rate() self.perform_simulated_annealing() self.print_best_objective_value()
def perform_random_restart_hill_descent(self): for i in range(self.hill_descent_count): for j in range(self.iteration_count): jump_function_prime = copy.deepcopy(self.jump_function) self.change_random_jump_number(jump_function_prime.rjm_board, jump_function_prime.board_size) jump_function_prime.rerun_objective_function() if jump_function_prime.objective_value <= self.jump_function.objective_value: self.jump_function = copy.deepcopy(jump_function_prime) if jump_function_prime.objective_value <= self.best_jump_function.objective_value: self.best_jump_function = copy.deepcopy( self.jump_function) self.jump_function = p2.JumpFunction()