# This prior is not exactly the same as the true parameter
    prior_dict = {'c': dists.Normal(loc=8e-11,scale=2e-11),
                  'm': dists.Normal(loc = 1.5, scale = 1e-1),
                  'a0':dists.Gamma(1/2, 2), # Chi squared with k=1
                  "v":dists.Gamma(1/2,2)}  # This is chi squared with k=1

    # # This prior is significantly different from the true parameters
    # prior_dict = {'c': dists.Normal(loc=8e-11,scale=1e-11),
    #               'm': dists.Normal(loc = 1.5, scale = 5e-1),
    #               'a0':dists.Gamma(1/2, 2), # Chi squared with k=1
    #               "v":dists.Gamma(1/2,2)}  # This is chi squared with k=1

    my_prior = dists.StructDist(prior_dict)

    # Run the smc2 inference
    fk_smc2 = ssp.SMC2(ssm_cls=ParisLaw, data=data, prior=my_prior, init_Nx=8000)#, ar_to_increase_Nx=0.1)
    alg_smc2 = particles.SMC(fk=fk_smc2, N=10000, store_history=True, verbose=True)
    alg_smc2.run()

    alg_smc2.true_model = true_model  # Save the true model so it can be used in post processing
    alg_smc2.true_states = true_states  # Save the true states so RUL's can be calculated

    # Save the result
    with open('run_20201010a.pkl', 'wb') as f:
        dill.dump(alg_smc2, f)


# Load the previously computed data
with open('run_20201010a.pkl', 'rb') as f:
    alg_smc2 = dill.load(f)
Exemple #2
0
# algorithms
N = 10**3  # re-run with N= 10^4 for the second CDF plots
fks = {}
fk_opts = {
    'ssm_cls': state_space_models.StochVolLeverage,
    'prior': prior,
    'data': data,
    'init_Nx': 100,
    'smc_options': {
        'qmc': False
    },
    'ar_to_increase_Nx': 0.1,
    'wastefree': False,
    'len_chain': 6
}
fks['smc2'] = ssp.SMC2(**fk_opts)
fk_opts['smc_options']['qmc'] = True
fks['smc2_qmc'] = ssp.SMC2(**fk_opts)
fk_opts['ssm_cls'] = state_space_models.StochVol
fks['smc2_sv'] = ssp.SMC2(**fk_opts)

# runs
runs = particles.multiSMC(fk=fks,
                          N=N,
                          collect=[Moments(mom_func=qtiles)],
                          verbose=True,
                          nprocs=0,
                          nruns=25)

# plots
#######
Exemple #3
0
                data=data,
                prior=my_prior,
                Nx=200,
                niter=1000)
pg.run()  # may take several seconds...

plt.plot(pg.chain.theta['mu'])
plt.xlabel('iter')
plt.ylabel('mu')

plt.figure()
plt.hist(pg.chain.theta['mu'][20:], 50)
plt.xlabel('mu')

import particles
from particles import smc_samplers as ssp

fk_smc2 = ssp.SMC2(ssm_cls=StochVol,
                   data=data,
                   prior=my_prior,
                   init_Nx=50,
                   ar_to_increase_Nx=0.1)
alg_smc2 = particles.SMC(fk=fk_smc2, N=500)
alg_smc2.run()

plt.figure()
plt.scatter(alg_smc2.X.theta['mu'], alg_smc2.X.theta['rho'])
plt.xlabel('mu')
plt.ylabel('rho')

plt.show()