def remove_particles(infile, outfile, keep_rate):
    """Remove a percentage of particles from a .bgeo file.

    Args:
        infile: Path to input .bgeo file.
        outfile: The file where the reduced number of particles will be stored.
        keep_rate: A float between 0 and 1 that describes how much percentage of
                   particles will be kept in the new file.
    """
    particles = partio.read(infile)
    orig_attr = particles.attributeInfo("position")
    orig_num_p = particles.numParticles()
    all_indices = np.arange(orig_num_p)
    keep_indices = np.random.choice(all_indices,
                                    size=int(orig_num_p * keep_rate),
                                    replace=False)

    new_particles = partio.create()
    P = new_particles.addAttribute("position", partio.VECTOR, 3)
    id = new_particles.addAttribute("id", partio.INT, 1)
    new_particles.addParticles(len(keep_indices))
    for index, i in enumerate(keep_indices):
        pos = particles.get(orig_attr, i)
        new_particles.set(P, index, pos)
    partio.write(outfile, new_particles)
def partio_uncompress(dirname):
    """Take a folder of compressed .bgeo files and uncompress those files.
    This can come in handy because SPlisHSPlasH stores it's particle data
    as compressed .bgeo files.

    Args:
        dirname: Path to a directory of .bgeo files.
    """
    for f in os.listdir(dirname):
        if not f.endswith(".bgeo"):
            continue
        p = partio.read(os.path.join(dirname, f))
        partio.write(os.path.join(dirname, f), p)
def partio_write_rigid_body(vertices, filename):
    """Write vertices of an object into a .bgeo file.

    Args:
        vertices: A num_vertices x 3 numpy array.
        filename: Path to the .bgeo file to create.
    """
    os.makedirs(os.path.dirname(filename), exist_ok=True)
    particleSet = partio.create()
    P = particleSet.addAttribute("position", partio.VECTOR, 3)
    id = particleSet.addAttribute("id", partio.INT, 1)
    particleSet.addParticles(len(vertices))
    for i, vertex in enumerate(vertices):
        particleSet.set(P, i, [float(x) for x in vertex])
    partio.write(filename, particleSet)
Exemple #4
0
def write_bgeo_from_numpy(outpath, pos_arr, vel_arr):
    import partio

    n = pos_arr.shape[0]
    if not (vel_arr.shape[0] == n and pos_arr.shape[1] == 3
            and vel_arr.shape[1] == 3):
        raise ValueError(
            "invalid shapes for pos_arr {} and/or vel_arr {}".format(
                pos_arr.shape, vel_arr.shape))

    p = partio.create()
    position_attr = p.addAttribute("position", partio.VECTOR, 3)
    velocity_attr = p.addAttribute("velocity", partio.VECTOR, 3)

    for i in range(n):
        idx = p.addParticle()
        p.set(position_attr, idx, pos_arr[i].astype(float))
        p.set(velocity_attr, idx, vel_arr[i].astype(float))

    partio.write(outpath, p)
Exemple #5
0
    def write(self, filename, delta):
        """ Write data to file. If delta is False, saves a full copy
            of the data, rebaselining. If delta is True, saves only
            the particles (todo: and attributes) that have changed,
            but maintains the original baseline
        """

        if not self.data:
            return

        # If we're saving a delta, create a new particle set with just
        # the differences from the original.
        if delta:
            data = self.createDelta()
        else:
            data = self.data

        partio.write(filename, data)

        # If we saved a full copy, rebaseline
        if not delta:
            self.filename = filename
            self.originalData = copy(data)
            self.setDirty(False)
Exemple #6
0
    def write(self, filename, delta):
        """ Write data to file. If delta is False, saves a full copy
            of the data, rebaselining. If delta is True, saves only
            the particles (todo: and attributes) that have changed,
            but maintains the original baseline
        """

        if not self.data:
            return

        # If we're saving a delta, create a new particle set with just
        # the differences from the original.
        if delta:
            data = self.createDelta()
        else:
            data = self.data

        partio.write(filename, data)

        # If we saved a full copy, rebaseline
        if not delta:
            self.filename = filename
            self.originalData = copy(data)
            self.setDirty(False)
Exemple #7
0
def main():
    """ Main """

    # Process command-line arguments
    filenames = []
    verbose = False
    compress = False
    for arg in sys.argv[1:]:
        if arg in ('-h', '--help'):
            print __doc__
            return

        if arg in ('-v', '--verbose'):
            verbose = True
            continue

        if arg in ('-c', '--compress'):
            compress = True
            continue

        filenames.append(arg)

    if len(filenames) != 2:
        print __doc__
        sys.stderr.write('Incorrect number of arguments.\n')
        sys.exit(1)

    file1, file2 = filenames[0:2]
    ext1 = os.path.splitext(file1)[1]
    ext2 = os.path.splitext(file2)[1]

    partio_extensions = ('.bgeo', '.geo', '.bhclassic', '.ptc', '.pdb')

    # Validate files
    if not os.path.exists(file1):
        sys.stderr.write('Invalid input file: {}\n'.format(file1))
        sys.exit(1)

    # Convert from json to partio
    if ext1 == '.json':
        if ext2 not in partio_extensions:
            sys.stderr.write('Unknown partio extension for: {}\n'.format(file2))
            sys.exit(1)

        with open(file1, 'r') as fp:
            data = json.load(fp)
        particleSet = fromJson(data)
        partio.write(file2, particleSet, compress)
        sys.exit(0)

    if ext1 not in partio_extensions:
        sys.stderr.write('Unknown partio extension for: {}\n'.format(file1))
        sys.exit(1)

    # Convert from partio to json
    if ext1 in partio_extensions:
        particleSet = partio.read(file1, verbose)
        data = toJson(particleSet)
        with open(file2, 'w') as fp:
            json.dump(data, fp, indent=2, sort_keys=True)
        sys.exit(0)

    print __doc__
    sys.stderr.write('Unknown file extension(s)')
    sys.exit(1)
Exemple #8
0
def run(config):
    os.environ[
        "CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"  # so the IDs match nvidia-smi
    os.environ["CUDA_VISIBLE_DEVICES"] = config.gpu_id  # "0, 1" for multiple

    prepare_dirs_and_logger(config)
    tf.compat.v1.set_random_seed(config.seed)
    config.rng = np.random.RandomState(config.seed)

    styler = Styler(config)
    styler.load_img(config.resolution[1:])

    params = {}

    # load particles
    nmin, nmax = np.iinfo(np.int32).max, 0
    for i in range(config.num_frames):
        pt_path = os.path.join(config.data_dir, config.dataset,
                               config.d_path % (config.target_frame + i))
        pt = partio.read(pt_path)
        p_num = pt.numParticles()
        nmin = min(p_num, nmin)
        nmax = max(p_num, nmax)

    print('# range:', nmin, nmax)

    p = []
    # r = []
    for i in trange(config.num_frames,
                    desc='load particle'):  # last one for mask
        pt_path = os.path.join(config.data_dir, config.dataset,
                               config.d_path % (config.target_frame + i))
        pt = partio.read(pt_path)

        p_attr_id = pt.attributeInfo('id')
        p_attr_pos = pt.attributeInfo('position')
        # p_attr_den = pt.attributeInfo('density')

        p_ = np.ones([nmax, 3], dtype=np.float32) * -1
        # r_ = np.zeros([nmax,1], dtype=np.float32)

        p_num = pt.numParticles()
        for j in range(p_num):
            p_id_j = pt.get(p_attr_id, j)[0]
            p_[p_id_j] = pt.get(p_attr_pos, p_id_j)
            # r_[p_id_j] = pt.get(p_attr_den, p_id_j)
        # r.append(r_)

        # normalize particle position [0-1]
        px, py, pz = p_[..., 0], p_[..., 1], p_[..., 2]
        px /= config.domain[2]
        py /= config.domain[1]
        pz /= config.domain[0]
        p_ = np.stack([pz, py, px], axis=-1)
        p.append(p_)

    print('resolution:', config.resolution)
    print('domain:', config.domain)
    print('radius:', config.radius)
    print('normalized px range', px.min(), px.max())
    print('normalized py range', py.min(), py.max())

    params['p'] = p

    # styler.render_test(params)
    result = styler.run(params)

    # save loss plot
    l = result['l']
    lb = []
    for o, l_ in enumerate(l):
        lb_, = plt.plot(range(len(l_)), l_, label='oct %d' % o)
        lb.append(lb_)
    plt.legend(handles=lb)
    # plt.show()
    plot_path = os.path.join(config.log_dir, 'loss_plot.png')
    plt.savefig(plot_path)

    # save particle (load using Houdini GPlay)
    p_sty = result['p']
    p = []
    # v_sty = result['v']
    # v = []
    for i in range(config.num_frames):
        # denormalize particle positions
        px, py, pz = p_sty[i][..., 2], p_sty[i][..., 1], p_sty[i][..., 0]
        px *= config.domain[2]
        py *= config.domain[1]
        pz *= config.domain[0]
        p_sty_ = np.stack([px, py, pz], axis=-1)
        p.append(p_sty_)

        # # denormalize particle displacement for stylization
        # vx, vy, vz = v_sty[i][...,2], v_sty[i][...,1], v_sty[i][...,0]
        # vx *= config.domain[2]
        # vy *= config.domain[1]
        # vz *= config.domain[0]
        # v_sty_ = np.stack([vx,vy,vz], axis=-1)
        # v.append(v_sty_)

        # create a particle set and attributes
        pt = partio.create()
        position = pt.addAttribute("position", partio.VECTOR, 3)
        # color = pt.addAttribute("Cd",partio.FLOAT,3)
        radius = pt.addAttribute("radius", partio.FLOAT, 1)
        # normal = pt.addAttribute("normal",partio.VECTOR,3)

        for p_sty_i in p_sty_:
            if p_sty_i[0] < 0: continue
            p_ = pt.addParticle()
            pt.set(position, p_, tuple(p_sty_i.astype(np.float)))
            pt.set(radius, p_, (config.radius, ))

        p_path = os.path.join(config.log_dir,
                              '%03d.bgeo' % (config.target_frame + i))
        partio.write(p_path, pt)

    r_sty = result['r']
    for i, r_sty_ in enumerate(r_sty):
        im = Image.fromarray(r_sty_)
        d_path = os.path.join(config.log_dir,
                              '%03d.png' % (config.target_frame + i))
        im.save(d_path)

    d_intm = result['d_intm']
    for o, d_intm_o in enumerate(d_intm):
        for i, d_intm_ in enumerate(d_intm_o):
            if d_intm_ is None: continue
            im = Image.fromarray(d_intm_)
            d_path = os.path.join(
                config.log_dir,
                'o%02d_%03d.png' % (o, config.target_frame + i))
            im.save(d_path)

    # visualization using open3d
    bbox = [
        [0, 0, 0],
        [config.domain[2], config.domain[1], config.domain[0]],  # [X,Y,Z]
    ]
    draw_pt(p, bbox=bbox, dt=0.1, is_2d=False)  # pv=v,
Exemple #9
0
for pobj in particles:
    pset = partio.create()
    pattr = pset.addAttribute("position", partio.VECTOR, 3)
    cattr = pset.addAttribute("color", partio.VECTOR, 3)
    nattr = pset.addAttribute("normal", partio.VECTOR, 3)
    pcount = cmds.getAttr(pobj + '.count')
    pset.addParticles(pcount)
    print('[Particle Export] Exporting %s (%d points)...' % (pobj, pcount))
    for i in range(pcount):
        # get position
        pos = cmds.getParticleAttr(pobj + '.pt[%d]' % i, at='position')[0:3]
        # get color
        if cmds.attributeQuery('rgbPP', n=pobj, ex=True):
            col = cmds.getParticleAttr(pobj + '.pt[%d]' % i, at='rgbPP')[0:3]
        elif cmds.attributeQuery('colorRed', n=pobj, ex=True):
            col = (cmds.getAttr(pobj + '.colorRed'),
                   cmds.getAttr(pobj + '.colorGreen'),
                   cmds.getAttr(pobj + '.colorBlue'))
        else:
            col = (1, 0, 0)
        # normal
        nml = (0, 0, 0)
        # set attributes
        pset.set(pattr, i, pos)
        pset.set(cattr, i, col)
        pset.set(nattr, i, nml)
    partio.write(str('%s/%s.bgeo' % (path, pobj)), pset, True)
    print('[Particle Export] Written to %s/%s.bgeo' % (path, pobj))
print('-' * 50)
print('[Particle Export] Done %d objects.' % len(particles))
cmds.select(selected)
def main():
    """ Main """

    # Process command-line arguments
    filenames = []
    verbose = False
    compress = False
    for arg in sys.argv[1:]:
        if arg in ('-h', '--help'):
            print(__doc__)
            return

        if arg in ('-v', '--verbose'):
            verbose = True
            continue

        if arg in ('-c', '--compress'):
            compress = True
            continue

        filenames.append(arg)

    if len(filenames) != 2:
        print(__doc__)
        sys.stderr.write('Incorrect number of arguments.\n')
        sys.exit(1)

    file1, file2 = filenames[0:2]
    ext1 = os.path.splitext(file1)[1]
    ext2 = os.path.splitext(file2)[1]

    partio_extensions = ('.bgeo', '.geo', '.bhclassic', '.ptc', '.pdb')

    # Validate files
    if not os.path.exists(file1):
        sys.stderr.write('Invalid input file: {}\n'.format(file1))
        sys.exit(1)

    # Convert from json to partio
    if ext1 == '.json':
        if ext2 not in partio_extensions:
            sys.stderr.write(
                'Unknown partio extension for: {}\n'.format(file2))
            sys.exit(1)

        with open(file1, 'r') as fp:
            data = json.load(fp)
        particleSet = fromJson(data)
        partio.write(file2, particleSet, compress)
        sys.exit(0)

    if ext1 not in partio_extensions:
        sys.stderr.write('Unknown partio extension for: {}\n'.format(file1))
        sys.exit(1)

    # Convert from partio to json
    if ext1 in partio_extensions:
        particleSet = partio.read(file1, verbose)
        data = toJson(particleSet)
        with open(file2, 'w') as fp:
            json.dump(data, fp, indent=2, sort_keys=True)
        sys.exit(0)

    print(__doc__)
    sys.stderr.write('Unknown file extension(s)')
    sys.exit(1)
Exemple #11
0
# create a particle set and attributes
p=partio.create()
position=p.addAttribute("position",partio.VECTOR,3)
color=p.addAttribute("Cd",partio.FLOAT,3)
radius=p.addAttribute("radius",partio.FLOAT,1)
normal=p.addAttribute("normal",partio.VECTOR,3)

# make a spiral circle thingy
t=0
dt=.01
import math

while t<2*math.pi:
    # allocate new particle
    i=p.addParticle()

    # set particle attributes
    r=.25*math.sin(10*t)+1.
    x,y,z=-r*math.sin(t),0,r*math.cos(t)

    p.set(position,i,(x,y,z))
    p.set(color,i,(t/2./math.pi,1-(t/2./math.pi),0))
    p.set(radius,i,(.02,))
    p.set(normal,i,(0,1,0))
    foo=p.get(position,i)

    t+=dt

# Write to a point cloud
partio.write("spiral.ptc",p)
Exemple #12
0
# create a particle set and attributes
p = partio.create()
position = p.addAttribute("position", partio.VECTOR, 3)
color = p.addAttribute("Cd", partio.FLOAT, 3)
radius = p.addAttribute("radius", partio.FLOAT, 1)
normal = p.addAttribute("normal", partio.VECTOR, 3)

# make a spiral circle thingy
t = 0
dt = .01
import math

while t < 2 * math.pi:
    # allocate new particle
    i = p.addParticle()

    # set particle attributes
    r = .25 * math.sin(10 * t) + 1.
    x, y, z = -r * math.sin(t), 0, r * math.cos(t)

    p.set(position, i, (x, y, z))
    p.set(color, i, (t / 2. / math.pi, 1 - (t / 2. / math.pi), 0))
    p.set(radius, i, (.02, ))
    p.set(normal, i, (0, 1, 0))
    foo = p.get(position, i)

    t += dt

# Write to a point cloud
partio.write("spiral.ptc", p)
Exemple #13
0
import partio
import os
fileLocation = os.path.dirname(__file__)
print fileLocation
for i in range (0,100):
    p=partio.read(fileLocation+"SnowF"+str(i).zfill(4)+".ptc")
    partio.write(fileLocation+"SnowF"+str(i).zfill(4)+".bgeo",p)
Exemple #14
0
def run(config):
    os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # so the IDs match nvidia-smi
    os.environ["CUDA_VISIBLE_DEVICES"] = config.gpu_id # "0, 1" for multiple

    prepare_dirs_and_logger(config)
    tf.compat.v1.set_random_seed(config.seed)
    config.rng = np.random.RandomState(config.seed)

    styler = Styler(config)
    styler.load_img(config.resolution)

    params = {}    

    # load particles
    p = []
    r = []
    for i in trange(config.num_frames, desc='load particle'):
        pt_path = os.path.join(config.data_dir, config.dataset, config.d_path % (config.target_frame+i))
        pt = partio.read(pt_path)

        p_id = pt.attributeInfo('id')
        p_pos = pt.attributeInfo('position')
        p_den = pt.attributeInfo('density')

        p_num = pt.numParticles()
        p_ = np.zeros([p_num,2], dtype=np.float32)
        r_ = np.zeros([p_num,1], dtype=np.float32)

        for j in range(p_num):
            p_id_ = pt.get(p_id, j)[0]
            p_[p_id_] = pt.get(p_pos, p_id_)[:-1] # 2d
            r_[p_id_] = pt.get(p_den, p_id_)

        r.append(r_)

        # normalize particle position [0-1]
        px, py = p_[...,0], p_[...,1]
        px /= config.domain[1]
        py /= config.domain[0]
        p_ = np.stack([py,px], axis=-1)
        p.append(p_)

    print('resolution:', config.resolution)
    print('domain:', config.domain)
    print('radius:', config.radius)
    print('normalized px range', px.min(), px.max())
    print('normalized py range', py.min(), py.max())
    print('num particles:', p[0].shape) # the number of particles is fixed

    params['p'] = p
    params['r'] = r

    # styler.render_test(params)
    result = styler.run(params)

    # save loss plot
    l = result['l']
    lb = []
    for o, l_ in enumerate(l):
        lb_, = plt.plot(range(len(l_)), l_, label='oct %d' % o)
        lb.append(lb_)
    plt.legend(handles=lb)
    # plt.show()
    plot_path = os.path.join(config.log_dir, 'loss_plot.png')
    plt.savefig(plot_path)


    # save density fields
    d_sty = result['d'] # [0-255], uint8
    # d_path = os.path.join(config.log_dir, 'd%03d_%03d.png' % (config.target_frame,config.target_frame+config.num_frames-1))
    # save_image(d_sty, d_path, nrow=5, gray=not 'c' in config.target_field)

    for i, d_sty_ in enumerate(d_sty):
        im = Image.fromarray(d_sty_)
        d_path = os.path.join(config.log_dir, '%03d.png' % (config.target_frame+i))
        im.save(d_path)

    d_intm = result['d_intm']
    for o, d_intm_o in enumerate(d_intm):
        for i, d_intm_ in enumerate(d_intm_o):
            im = Image.fromarray(d_intm_)
            d_path = os.path.join(config.log_dir, 'o%02d_%03d.png' % (o, config.target_frame))
            im.save(d_path)

    # save particles (load using Houdini GPlay)
    c_sty = result['c']
    p_org = []
    for p_ in p:
        # denormalize particle positions
        px, py = p_[...,1], p_[...,0]
        px *= config.domain[1]
        py *= config.domain[0]
        p_org.append(np.stack([px,py], axis=-1))

    for i in range(config.num_frames):
        # create a particle set and attributes
        pt = partio.create()
        position = pt.addAttribute("position",partio.VECTOR,2)
        color = pt.addAttribute("Cd",partio.FLOAT,3)
        radius = pt.addAttribute("radius",partio.FLOAT,1)
        # normal = pt.addAttribute("normal",partio.VECTOR,3)
                
        for pi in range(p_org[i].shape[0]):
            p_ = pt.addParticle()
            pt.set(position, p_, tuple(p_org[i][pi].astype(np.float)))
            pt.set(color, p_, tuple(c_sty[i][pi].astype(np.float)))
            pt.set(radius, p_, (config.radius,))
        
        p_path = os.path.join(config.log_dir, '%03d.bgeo' % (config.target_frame+i))
        partio.write(p_path, pt)

    # visualization using open3d
    bbox = [
        [0,0,-1],
        [config.domain[1],config.domain[0],1], # [X,Y,Z]
        ]
    draw_pt(p_org, pc=c_sty, bbox=bbox, dt=0.1)
def run(config):
    os.environ[
        "CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"  # so the IDs match nvidia-smi
    os.environ["CUDA_VISIBLE_DEVICES"] = config.gpu_id  # "0, 1" for multiple

    prepare_dirs_and_logger(config)
    tf.compat.v1.set_random_seed(config.seed)
    config.rng = np.random.RandomState(config.seed)

    resampler = SimG2P(config)

    # load input density fields
    for t in trange(config.num_frames,
                    desc='load density'):  # last one for mask
        d_path = os.path.join(config.data_dir, config.dataset,
                              config.d_path % (config.target_frame + t))
        with np.load(d_path) as data:
            d = data['x'][:, ::-1]  # [D,H,W], [0-1]

        # mantaflow dataset
        v_path = os.path.join(config.data_dir, config.dataset,
                              config.v_path % (config.target_frame + t))
        with np.load(v_path) as data:
            v_ = data['x']  # [D,H,W,3]
            vx = np.dstack(
                (v_, np.zeros((v_.shape[0], v_.shape[1], 1, v_.shape[3]))))
            vx = (vx[:, :, 1:, 0] + vx[:, :, :-1, 0]) * 0.5
            vy = np.hstack(
                (v_, np.zeros((v_.shape[0], 1, v_.shape[2], v_.shape[3]))))
            vy = (vy[:, 1:, :, 1] + vy[:, :-1, :, 1]) * 0.5
            vz = np.vstack(
                (v_, np.zeros((1, v_.shape[1], v_.shape[2], v_.shape[3]))))
            vz = (vz[1:, :, :, 2] + vz[:-1, :, :, 2]) * 0.5
            v_ = np.stack([vx, vy, vz], axis=-1)
            v_ = v_[:, ::-1]

        vx = v_[..., 0] / v_.shape[2] * config.scale
        vy = -v_[..., 1] / v_.shape[1] * config.scale
        vz = v_[..., 2] / v_.shape[0] * config.scale
        u = np.stack([vz, vy, vx], axis=-1)

        if config.resampling:
            if t == 0:
                n_prev = 0

                # sampling at the beginning wo opt.
                p, p_id = resampler.sample(d, disc=config.disc, threshold=0)

            result = resampler.optimize(p, p_id, d, u)

            p = result['p']
            p_id = result['p_id']
            p_den = result['p_den']
            # d_diff = result['d_diff']
            # plt.imshow(d_diff); plt.show()
            l = result['l'][-1]  # last loss
            d_smp = result['d_smp']
        else:
            if t == 0:
                n_prev = 0

                # sampling at the beginning wo opt.
                p, p_id = resampler.sample(d, disc=config.disc, threshold=0)
                p_src = p
            else:
                # simply source particles of t=0
                p = np.concatenate([p, p_src], axis=0)
                p_id = np.arange(p.shape[0])

            p_den = np.ones([p.shape[0], 1])
            p, d_smp = resampler.naive_adv(p, u, p_den)
            l = 0

        print(t, 'num particles', p.shape[0], '(+%d)' % (p.shape[0] - n_prev),
              'loss', l)
        n_prev = p.shape[0]

        # convert to the original domain coordinate
        px, py, pz = p[..., 2], 1 - p[..., 1], p[..., 0]
        p_ = np.stack([
            px * config.domain[2], py * config.domain[1], pz * config.domain[0]
        ],
                      axis=-1)

        # create a particle set and attributes
        pt = partio.create()
        pid = pt.addAttribute('id', partio.INT, 1)
        position = pt.addAttribute("position", partio.VECTOR, 3)
        if p_den.shape[1] > 1:
            density = pt.addAttribute('density', partio.VECTOR, p_den.shape[1])
        else:
            density = pt.addAttribute('density', partio.FLOAT, 1)
        color = pt.addAttribute("Cd", partio.FLOAT, 3)
        radius = pt.addAttribute("radius", partio.FLOAT, 1)

        for i in range(p_.shape[0]):
            pt_ = pt.addParticle()
            pt.set(pid, pt_, (int(p_id[i]), ))
            pt.set(position, pt_, tuple(p_[i].astype(np.float)))
            if p_den.shape[1] > 1:
                pt.set(density, pt_, tuple(p_den[i].astype(np.float)))
            else:
                pt.set(density, pt_, (float(p_den[i]), ))
            pt.set(color, pt_,
                   tuple(np.array([p_den[i, 0]] * 3, dtype=np.float)))
            pt.set(radius, pt_, (config.radius, ))

        # save particle
        p_path = os.path.join(config.log_dir,
                              '%03d.bgeo' % (config.target_frame + t))
        partio.write(p_path, pt)

        # save density image
        transmit = np.exp(-np.cumsum(d_smp[::-1], axis=0) * config.transmit)
        d_img = np.sum(d_smp * transmit, axis=0)
        d_img /= d_img.max()
        im = Image.fromarray((d_img[::-1] * 255).astype(np.uint8))
        im_path = os.path.join(config.log_dir,
                               '%03d.png' % (config.target_frame + t))
        im.save(im_path)

    stat_path = os.path.join(config.log_dir, 'stat.txt')
    with open(stat_path, 'w') as f:
        f.write('num particles %d\n' % p.shape[0])
        f.write('loss %.2f' % l)