def update_task_influence(self, influence):
        'update dynamic goal values depending on current situation'
        # assess situation
        my_tiles = [loc for loc in influence.map if math.fabs(influence.map[loc]) > 0.01]
        total_tile_count = self.gamestate.cols * self.gamestate.rows
        self.winning_percentage = float(len(my_tiles))/total_tile_count
        debug_logger.debug('currently owning %d in %d tiles, ratio: %f' % 
			(len(my_tiles), total_tile_count, self.winning_percentage))
        debug_logger.debug('my ant_hill is at %s' % str(self.gamestate.my_hills()))
        debug_logger.debug('known enemy hill: %s' % str(self.gamestate.enemy_hills()))
        
        # alter aggressiveness as situation changes
        self.my_fighter_value = 0 - 1 - (self.winning_percentage / 0.3 % 1)
        self.enemy_ant_value = 0 - (self.winning_percentage / 0.3 % 1) * 2
        
        # hill defense
        if len(self.gamestate.my_hills()) == 1:
            my_hill = self.gamestate.my_hills()[0]
            for enemy_ninja in [ant for ant, owner in self.gamestate.enemy_ants() if self.gamestate.manhattan_distance(my_hill, ant) < 8]:
                influence.map[my_hill] += self.enemy_ninja_value
        
        ## create route task
        # find area with highest ant density
        high_dense_loc = max(influence.map, key=influence.map.get)
        high_dense_val = influence.map[high_dense_loc]
        # find closest desirable area using bfs
        route = path.bfs_findtask(self.gamestate, influence, high_dense_loc, 500)
        # setup task, only long distance ones count
        if len(route) > 8:
            self.route_task = (route, high_dense_val)
            
        debug_logger.debug('found route_task: %s' % str(self.route_task))
 def update_task_influence(self, influence):
     'update dynamic goal values depending on current situation'
     # assess situation
     my_tiles = [loc for loc in influence.map if math.fabs(influence.map[loc]) > 0.01]
     total_tile_count = self.gamestate.cols * self.gamestate.rows
     self.winning_percentage = len(my_tiles), total_tile_count, float(len(my_tiles))/total_tile_count
     logging.debug('currently owning %d in %d tiles, ratio: %f' % self.winning_percentage)
     logging.debug('my ant_hill is at %s' % str(self.gamestate.my_hills()))
     logging.debug('known enemy hill: %s' % str(self.gamestate.enemy_hills()))
     # if winning 
     # if losing
     # unsure
     
     ## create route task
     # find area with highest ant density
     high_dense_loc = max(influence.map, key=influence.map.get)
     high_dense_val = influence.map[high_dense_loc]
     # find closest desirable area using bfs
     route = path.bfs_findtask(self.gamestate, influence, high_dense_loc, 500)
     # setup task
     if len(route) > 3:
         self.route_task = (route, high_dense_val)
     logging.debug('found route_task: %s' % str(self.route_task))