def save(self, storage: FileStorage, path: PurePath, **kwargs) -> PurePath:
        """
        Save the given file in this bucket and returns its relative path

        :param storage: The file to be saved

        :param path: The relative path where to save the file in this bucket. It will be modified in
                     case of conflicts if
                     :py:attr:`flask_googlestorage.LocalBucket.resolve_conflicts` is set to
                     ``True``. Note that the path should be secured beforehand. You may use
                     :py:func:`flask_googlestorage.utils.secure_path` for this.

        :returns: The relative path where the file was saved. You may use this value to get the URL
                  or delete the file later.
        """
        (self.destination / path.parent).mkdir(parents=True, exist_ok=True)
        filepath = self.destination / path
        if self.resolve_conflicts and filepath.exists():
            stem, suffix = path.stem, path.suffix
            count = 0
            while filepath.exists():
                count += 1
                path = path.with_name(f"{stem}_{count}{suffix}")
                filepath = self.destination / path

        storage.save(filepath)
        return path
Exemple #2
0
 def inner(path: PurePath) -> Optional[PurePath]:
     match = to_pattern(regex).fullmatch(path.name)
     if match:
         groups = [match.group(0)]
         groups.extend(match.groups())
         return path.with_name(target.format(*groups))
     return None
Exemple #3
0
def main():
    argp = argparse.ArgumentParser()
    argp.add_argument("--log-files",
                      nargs="+",
                      help="these are the collected log files",
                      required=True)
    argp.add_argument("--output", help="the output file", default=None)
    argp.add_argument("--svg",
                      help="the output file",
                      action="store_true",
                      default=False)
    args = argp.parse_args()

    #assert len(args.log_files) == 1

    output = args.output
    if output is None:
        input_file = PurePath(args.log_files[0])
        output = str(input_file.with_name(input_file.name + ".out.json"))

    parser = ParserSvg() if args.svg else ParserJson()

    files = []
    for logfile_name in args.log_files:
        with open(logfile_name) as logfile:
            files.append(list(logfile))

    parser.add_files(files)

    parser.output(output)
    if args.svg:
        parser._write_svg("/tmp/deadlock.svg")
Exemple #4
0
def load_file(session: Session, path: PurePath, content: str):
    data = deserialize_file(path.suffix, content)
    if "_type" in data:
        cls = Model._decl_class_registry[data["_type"]]  # type: ignore
    else:
        for model_class in Model._decl_class_registry.values():
            if hasattr(model_class, "babu_paths"):
                for path_glob in model_class.babu_paths:
                    if path.match(path_glob):
                        cls = model_class
                        break
    inst = cls()
    inst.id = path.with_name(path.stem).as_posix()
    for k, v in data.items():
        if k == "_type":
            continue
        if k == CONTENT:
            inspector = inspect(cls)
            for col in inspector.columns:
                if isinstance(col.type, Content):
                    k = col.name
                    break
            else:
                raise ValueError(f"Class {cls} has no content column")
        setattr(inst, k, v)
    session.add(inst)
    session.commit()
Exemple #5
0
    def organize_file(self, dir_path):
        def mime_filter(my_file):
            mime = mimetypes.guess_type(my_file)
            return False if mime[0] is None or mime[0].lower().find(
                args.mime.lower()) == -1 else True

        def no_filter(my_file):
            return True

        file_filter = mime_filter if args.mime else no_filter
        files = [
            my_file for my_file in dir_path.glob('**/*')
            if my_file.is_file() and file_filter(my_file)
        ]

        for file_path in files:
            old_file = PurePath(file_path)
            current_name = old_file.name
            if not self.is_current_file_name_valid_for_rename(old_file):
                print('Skipping "{0}"'.format(current_name))
                continue
            dir_name = old_file.parent.name
            new_name = self.extract_file_name(old_file,
                                              dir_name) + old_file.suffix
            print(
                'Converting "{0}" to "{1}" using directory name "{2}"'.format(
                    current_name, new_name, dir_name))
            new_file = old_file.with_name(new_name)
            if not args.dry_run:
                file_path.rename(new_file)
Exemple #6
0
def undraft(pathlike):
    """
    Remove the leading `_` from a path, if any.
    """
    path = PurePath(pathlike)
    if path.stem.startswith("_"):
        return path.with_name(re.sub(r'^_', "", path.name))
    else:
        return path
async def sticker_downloader(_, message):
    """Copying @DownloadStickersBot"""
    LOGGER.info(message.from_user)
    sticker = message.sticker
    pack_name = sticker.set_name
    pack_link = f"http://t.me/addstickers/{pack_name}" if pack_name else ""
    sticker_ext = PurePath(message.sticker.file_name).suffix
    zipfile_name = f"{str(message.from_user.id)}_{pack_name}{sticker_ext}.zip"

    Path(Config.WORK_DIR).mkdir(
        exist_ok=True
    )  # Cause TemporaryDirectory failed to create parent directory
    with TemporaryDirectory(dir=Config.WORK_DIR) as tempdir:
        status = await message.reply_text(
            text=String.DOWNLOAD_START, reply_to_message_id=message.message_id
        )
        try:
            download_to = await message.download(
                file_name=f"{tempdir}/", progress_args=String.DOWNLOAD_START
            )
        except ValueError as e:
            await status.edit_text(text=str(e))
            return False
        await status.edit_text(
            text=String.STICKER_INFO.format(
                sticker.set_name, sticker.emoji, sticker.file_id
            )
        )
        final_location = PurePath(download_to)
        LOGGER.info(final_location)  # /app/DOWNLOADS/<tempdir>/sticker.webp

        zipfile_path = (
            str(final_location.parent) + f"/{zipfile_name}"
        )  # /app/DOWNLOADS/<tempdir>/<zipfile_name>
        with ZipFile(zipfile_path, "w") as stickerZip:
            stickerZip.write(final_location, final_location.name)

        if sticker_ext == ".webp":
            png_location = Path(final_location.with_name(final_location.stem + ".png"))
            LOGGER.info(png_location)  # /app/DOWNLOADS/<tempdir>/sticker.png
            # https://stackoverflow.com/a/21669827/4723940
            Image.open(download_to).convert("RGB").save(png_location, "PNG")

            await status.reply_photo(
                photo=png_location, reply_to_message_id=status.message_id
            )

        await status.reply_document(
            document=zipfile_path,
            caption=pack_link,
            reply_to_message_id=status.message_id,
        )
Exemple #8
0
def upload_excel_file(file: FileStorage, meta: Dict):
    excel_sheets = pandas.read_excel(
        file, sheet_name=None)  # type: Dict[str, pandas.DataFrame]
    excel_sheets = {
        sheet: data
        for (sheet, data) in excel_sheets.items() if not data.empty
    }

    basename = PurePath(cast(str, file.filename)).with_suffix('')

    try:
        db_files = []

        def push_file(name: PurePath, data: pandas.DataFrame):
            db_file = csv_file_schema.load({
                'name': name.with_suffix('.csv').name,
                'table': data.to_csv(index=False),
                'meta': meta
            })

            db_files.append(db_file)
            db.session.add(db_file)

        if len(excel_sheets) == 1:
            # single file case, simple name
            data = next(iter(excel_sheets.values()))
            push_file(basename, data)
        else:
            for sheet, data in excel_sheets.items():
                push_file(basename.with_name('%s-%s' % (basename.name, sheet)),
                          data)

        db.session.flush()

        serialized = [_serialize_csv_file(f) for f in db_files]

        db.session.commit()

        return jsonify(serialized), 201
    except Exception:
        for f in db_files:
            if f.uri.is_file():
                f.uri.unlink()
        db.session.rollback()
        raise
Exemple #9
0
def main():
    parser = argparse.ArgumentParser(description='Basic image processing application with kernel '
                                                 'convolution.')
    parser.add_argument('operation', choices=['sobel', 'sobel_gradient', 'gaussian', 'examples'],
                        help='The kernel operation to perform.')
    parser.add_argument('src', help='Source image path.')
    parser.add_argument('-o', help='Output image path.')
    args = parser.parse_args()

    in_path = PurePath(args.src)
    if args.o is None:
        out_path = in_path.with_name(f'{in_path.stem}_out{in_path.suffix}')
    else:
        out_path = PurePath(args.o)

    img = cv2.imread(str(in_path), cv2.IMREAD_GRAYSCALE)
    out = operations[args.operation](img)
    cv2.imwrite(str(out_path), out)
Exemple #10
0
 def export(self):
     #チップの幅と高さを得る
     cw = self.to_int(self.entry10001_text.get())
     if cw is None:
         cw = 48
         self.entry10001_text.set('{0:d}'.format(48))
     ch = self.to_int(self.entry10002_text.get())
     if ch is None:
         ch = 48
         self.entry10002_text.set('{0:d}'.format(48))
     #元ファイルのパス
     pp = PurePath(self.entry10000_text.get())
     #出力
     img = Image.open(self.entry10000_text.get())
     for i in range(img.height // ch):
         for j in range(img.width // cw):
             pt = pp.with_name(pp.stem + '_y{:02d}'.format(i) +
                               'x{:02d}'.format(j) + pp.suffix)
             box = (j * cw, i * ch, j * cw + cw, i * ch + ch)
             reg = img.crop(box)
             reg.save(str(pt), quality=75)
     img.close()
Exemple #11
0
    async def _handle_link(
        self,
        element: IliasPageElement,
        element_path: PurePath,
    ) -> Optional[Awaitable[None]]:
        log.explain_topic(f"Decision: Crawl Link {fmt_path(element_path)}")
        log.explain(f"Links type is {self._links}")

        link_template_maybe = self._links.template()
        link_extension = self._links.extension()
        if not link_template_maybe or not link_extension:
            log.explain("Answer: No")
            return None
        else:
            log.explain("Answer: Yes")
        element_path = element_path.with_name(element_path.name +
                                              link_extension)

        maybe_dl = await self.download(element_path, mtime=element.mtime)
        if not maybe_dl:
            return None

        return self._download_link(element, link_template_maybe, maybe_dl)
Exemple #12
0
def load_requirements(path: PurePath) -> List[str]:
    """ Load dependencies from a requirements.txt style file, ignoring comments etc. """
    res = []
    with open(path) as fd:
        for line in fd.readlines():
            while line.endswith('\n') or line.endswith('\\'):
                line = line[:-1]
            line = line.strip()
            if not line or line.startswith('-') or line.startswith('#'):
                continue
            res += [line]
    return res


here = PurePath(__file__)
README = open(here.with_name('README.md')).read()

install_requires = load_requirements(here.with_name('requirements.txt'))
test_requires = load_requirements(here.with_name('test_requirements.txt'))

setup(
    name='eduid-scimapi',
    version=version,
    description="External SCIM API for eduID",
    classifiers=[
        'Framework :: Falcon',
    ],
    keywords='eduid',
    author='Fredrik Thulin',
    author_email='*****@*****.**',
    url='https://www.eduid.se/',
Exemple #13
0
#!/usr/bin/env python3

import os
from pathlib import PurePath
from asciidocapi import AsciiDocAPI

man_pages = [
    'man/gnome-shell.1',
    'subprojects/extensions-tool/man/gnome-extensions.1',
]

sourceroot = os.environ.get('MESON_SOURCE_ROOT')
distroot = os.environ.get('MESON_DIST_ROOT')

asciidoc = AsciiDocAPI()

for man_page in man_pages:
    page_path = PurePath(man_page)
    src = PurePath(sourceroot, page_path.with_suffix('.txt'))
    dst = PurePath(distroot, page_path)
    stylesheet = src.with_name('stylesheet.xsl')

    asciidoc.options('--xsl-file', os.fspath(stylesheet))
    asciidoc.execute(os.fspath(src), outfile=os.fspath(dst))
def evaluate_all(
    experiments: Iterable[Tuple[Iterable[Estimator], int]],
    dataset: UCIMultiClassDataset,
    log_trainer: Trainer,
    log_epsilon: float,
    tgt_trainer: Trainer,
    tgt_epsilon: float,
    max_num_workers: int,
    random_reward_prob: float = 0.0,
    device=None,
):
    action_space = ActionSpace(dataset.num_actions)
    config_path = PurePath(dataset.config_file)
    data_name = config_path.stem
    log_model_name = data_name + "_" + log_trainer.__class__.__name__ + ".pickle"
    log_model_file = str(config_path.with_name(log_model_name))
    tgt_model_name = data_name + "_" + tgt_trainer.__class__.__name__ + ".pickle"
    tgt_model_file = str(config_path.with_name(tgt_model_name))

    log_trainer.load_model(log_model_file)
    tgt_trainer.load_model(tgt_model_file)
    if not log_trainer.is_trained or not tgt_trainer.is_trained:
        (
            train_x,
            train_y,
            train_r,
            val_x,
            val_y,
            val_r,
            test_x,
            test_y,
            test_r,
            train_choices,
        ) = dataset.train_val_test_split((0.2, 0.8))
        trainer_data = TrainingData(train_x, train_y, None, val_x, val_y, None)
        if not log_trainer.is_trained:
            log_trainer.train(trainer_data)
            log_trainer.save_model(log_model_file)
        if not tgt_trainer.is_trained:
            tgt_trainer.train(trainer_data)
            tgt_trainer.save_model(tgt_model_file)

    log_results = log_trainer.predict(dataset.features)
    assert log_results.probabilities is not None
    log_policy = MultiClassPolicy(action_space, log_results.probabilities,
                                  log_epsilon)

    tgt_results = tgt_trainer.predict(dataset.features)
    assert tgt_results.probabilities is not None
    tgt_policy = MultiClassPolicy(action_space, tgt_results.probabilities,
                                  tgt_epsilon)

    tasks = []
    # pyre-fixme[61]: `train_choices` may not be initialized here.
    test_queries = list(set(range(len(dataset))) - set(train_choices))
    for estimators, num_samples in experiments:
        samples = []
        for _ in range(num_samples):
            qid = random.sample(test_queries, 1)
            label = int(dataset.labels[qid].item())
            log_action, log_action_probabilities = log_policy(qid)
            log_reward = 1.0 if log_action.value == label else 0.0
            tgt_action, tgt_action_probabilities = tgt_policy(qid)
            ground_truth_reward = 1.0 if tgt_action.value == label else 0.0
            item_feature = dataset.features[qid]
            random_reward = random.random() < random_reward_prob
            samples.append(
                LogSample(
                    context=qid,
                    log_action=log_action,
                    log_reward=random.randint(0, 1)
                    if random_reward else log_reward,
                    log_action_probabilities=log_action_probabilities,
                    tgt_action_probabilities=tgt_action_probabilities,
                    tgt_action=tgt_action,
                    ground_truth_reward=ground_truth_reward,
                    item_feature=item_feature,
                ))
        tasks.append(
            (estimators, BanditsEstimatorInput(action_space, samples, False)))

    evaluator = Evaluator(tasks, max_num_workers)
    results = evaluator.evaluate()
    Evaluator.report_results(results)
    return results
Exemple #15
0
    with open(path) as fd:
        for line in fd.readlines():
            while line.endswith('\n') or line.endswith('\\'):
                line = line[:-1]
            line = line.strip()
            if not line or line.startswith('-') or line.startswith('#'):
                continue
            res += [line]
    return res


version = '0.0.4'

here = PurePath(__file__)

install_requires = load_requirements(here.with_name('requirements.txt'))
test_requires = load_requirements(here.with_name('test_requirements.txt'))

README = 'SUNET haproxy status'
try:
    README = open(os.path.join(here, 'README.rst')).read()
except IOError:
    pass

setup(
    name='haproxy_status',
    version=version,
    description='SUNET haproxy status page',
    long_description=README,
    # TODO: add classifiers
    classifiers=[
Exemple #16
0
 def inner(path: PurePath) -> Optional[PurePath]:
     if path.name == source:
         return path.with_name(target)
     return None
def intermediate_path(job: dict,
                      render_path: pathlib.PurePath) -> pathlib.PurePath:
    """Determine the intermediate render output path."""

    name = f'{render_path.name}__intermediate-{job["_created"]:%Y-%m-%d_%H%M%S}'
    return render_path.with_name(name)
Exemple #18
0
def replace_filename():
    '''I can only replace the filename. Fails on PurePaths that never had a filename to begin with'''
    relative = PurePath('austinchang/tutorials/python/language/python_37/popular_modules/pathlib_/purepath/methods.r2d2.py')
    print(relative.with_name('davidchang')) # austinchang/tutorials/python/language/python_37/popular_modules/pathlib_/purepath/davidchang
    abs_ = PurePath('/')
    print(abs_.with_name('hi')) # ValueError: PurePosixPath('/') has an empty name
Exemple #19
0
def load_requirements(path: PurePath) -> List[str]:
    """ Load dependencies from a requirements.txt style file, ignoring comments etc. """
    res = []
    with open(path) as fd:
        for line in fd.readlines():
            while line.endswith('\n') or line.endswith('\\'):
                line = line[:-1]
            line = line.strip()
            if not line or line.startswith('-') or line.startswith('#'):
                continue
            res += [line]
    return res


here = PurePath(__file__)
README = open(here.with_name('README.rst')).read()
NEWS = open(here.with_name('NEWS.txt')).read()

install_requires = load_requirements(here.with_name('requirements.txt'))
tests_require = load_requirements(here.with_name('test_requirements.txt'))

python_implementation_str = python_implementation()

setup(
    name='pyFF',
    version=__version__,
    description="Federation Feeder",
    long_description=README + '\n\n' + NEWS,
    classifiers=[
        # Get strings from http://pypi.python.org/pypi?%3Aaction=list_classifiers
        'Programming Language :: Python :: 3',
Exemple #20
0
def evaluate_all(
    experiments: Iterable[Tuple[Iterable[Estimator], int]],
    dataset: UCIMultiClassDataset,
    log_trainer: Trainer,
    log_epsilon: float,
    tgt_trainer: Trainer,
    tgt_epsilon: float,
    max_num_workers: int,
    device=None,
):
    action_space = ActionSpace(dataset.num_actions)
    config_path = PurePath(dataset.config_file)
    data_name = config_path.stem
    log_model_name = data_name + "_" + log_trainer.__class__.__name__ + ".pickle"
    log_model_file = str(config_path.with_name(log_model_name))
    tgt_model_name = data_name + "_" + tgt_trainer.__class__.__name__ + ".pickle"
    tgt_model_file = str(config_path.with_name(tgt_model_name))

    log_trainer.load_model(log_model_file)
    tgt_trainer.load_model(tgt_model_file)
    if not log_trainer.is_trained or not tgt_trainer.is_trained:
        (
            train_x,
            train_y,
            train_r,
            val_x,
            val_y,
            val_r,
            test_x,
            test_y,
            test_r,
        ) = dataset.train_val_test_split((0.8, 0.8))
        trainer_data = TrainingData(train_x, train_y, None, val_x, val_y, None)
        if not log_trainer.is_trained:
            log_trainer.train(trainer_data)
            log_trainer.save_model(log_model_file)
        if not tgt_trainer.is_trained:
            tgt_trainer.train(trainer_data)
            tgt_trainer.save_model(tgt_model_file)

    log_results = log_trainer.predict(dataset.features)
    log_policy = MultiClassPolicy(action_space, log_results.probabilities,
                                  log_epsilon)

    tgt_results = tgt_trainer.predict(dataset.features)
    tgt_policy = MultiClassPolicy(action_space, tgt_results.probabilities,
                                  tgt_epsilon)

    inputs = []
    tasks = []
    total_queries = len(dataset)
    for estimators, num_samples in experiments:
        samples = []
        for i in range(num_samples):
            qid = random.randrange(total_queries)
            label = int(dataset.labels[qid].item())
            log_action, log_action_probabilities = log_policy(qid)
            log_reward = 1.0 if log_action.value == label else 0.0
            tgt_action, tgt_action_probabilities = tgt_policy(qid)
            ground_truth_reward = 1.0 if tgt_action.value == label else 0.0
            item_feature = dataset.features[qid]
            samples.append(
                LogSample(
                    context=qid,
                    log_action=log_action,
                    log_reward=log_reward,
                    log_action_probabilities=log_action_probabilities,
                    tgt_action_probabilities=tgt_action_probabilities,
                    tgt_action=tgt_action,
                    ground_truth_reward=ground_truth_reward,
                    item_feature=item_feature,
                ))
        tasks.append(
            (estimators, BanditsEstimatorInput(action_space, samples, False)))

    logging.info("start evaluating...")
    st = time.perf_counter()
    evaluator = Evaluator(tasks, max_num_workers)
    results = evaluator.evaluate()
    Evaluator.report_results(results)
    logging.info(f"evaluating done in {time.perf_counter() - st}s")
    return results
Exemple #21
-1
def intermediate_path(job: dict, render_path: pathlib.PurePath) -> pathlib.PurePath:
    """Determine the intermediate render output path."""

    name = f'{render_path.name}__intermediate-{job["_created"]:%Y-%m-%d_%H%M%S}'
    return render_path.with_name(name)