def train(tr_data_cifar10, tr_label_cifar10, data_num_len_cifar10,
          ts_data_cifar10, ts_label_cifar10, ts_num_len_cifar10, candidate,
          max_steps):

    #candidate.display_structure()
    # define local variables
    tr_data1 = tr_data_cifar10
    tr_label1 = tr_label_cifar10
    data_num_len1 = data_num_len_cifar10
    max_data_len = int(data_num_len1 /
                       FLAGS.batch_num)  # avoid [a:b], a will greater than b

    ts_data1 = ts_data_cifar10
    ts_label1 = ts_label_cifar10
    ts_num_len1 = ts_num_len_cifar10

    L = int(candidate.feature_layer_num + candidate.fc_layer_num +
            1)  # +1 for first conv layer
    M = int(candidate.module_num)
    F = int(candidate.filter_num
            ) * 2  # due to filter number must be an even number
    FC = int(candidate.fc_layer_num)
    FL = candidate.feature_layer_array

    ## TASK 1
    sess = tf.InteractiveSession()

    # Input placeholders
    with tf.name_scope('input'):
        x = tf.placeholder(tf.float32, [None, 32 * 32 * 3], name='x-input')
        y_ = tf.placeholder(tf.float32, [None, 10], name='y-input')
    keep_prob = tf.placeholder(tf.float32)

    with tf.name_scope('input_reshape'):
        image_shaped_input = tf.reshape(x, [-1, 32, 32, 3])

    ## need to change when involve task2
    # geopath_examples
    geopath = pathnet.geopath_initializer(L, M)

    ## need to change when involve task2
    # fixed weights list
    fixed_list = np.ones((L, M), dtype=str)
    for i in range(L):
        for j in range(M):
            fixed_list[i, j] = '0'

    # record weights, biases  and sum_weights that need to change
    weights_list = np.zeros((L, M), dtype=object)
    biases_list = np.zeros((L, M), dtype=object)
    sum_weights_list = np.zeros((L, M), dtype=object)
    for i in range(L):
        for j in range(M):
            _initial1 = tf.truncated_normal(shape=[1], mean=1, stddev=0.1)
            _initial2 = tf.truncated_normal(shape=[1], mean=1, stddev=0.1)
            sum_weights_list[i, j] = [
                tf.Variable(_initial1),
                tf.Variable(_initial2)
            ]

    ## model define
    layer_modules_list = np.zeros(M, dtype=object)

    # first layer: conv
    for j in range(M):
        layer_modules_list[j], weights_list[0, j], biases_list[
            0, j] = pathnet.conv_module(
                sum_weights_list[0][j][1] * image_shaped_input, F, [5, 5],
                geopath[0, j], 1, 'conv_layer' + str(0 + 1) + "_" + str(j + 1),
                keep_prob)

    net = np.sum(
        map(lambda (a, b): a * b[0],
            zip(layer_modules_list, sum_weights_list[0]))) / M

    # feature abstract layers
    for i in range(len(FL)):
        if FL[i] == 0:
            for j in range(M):
                layer_modules_list[j], weights_list[i + 1, j], biases_list[
                    i + 1, j] = pathnet.res_fire_layer(
                        sum_weights_list[i + 1, j][1] * net, geopath[i + 1, j],
                        'res_fire_layer' + str(i + 2) + "_" + str(j + 1),
                        keep_prob)
        else:
            # check dimension_reduction input whether to small 1*1
            if int(net.get_shape()[1]) == 1 and int(net.get_shape()[2]) == 1:
                candidate.disable_mask[i] = 1
                continue

            for j in range(M):
                layer_modules_list[j], weights_list[i + 1, j], biases_list[
                    i + 1, j] = pathnet.Dimensionality_reduction_module(
                        sum_weights_list[i + 1, j][1] * net, geopath[i + 1, j],
                        'dimension_reduction_layer' + str(i + 2) + "_" +
                        str(j + 1))
        net = np.sum(
            map(lambda (a, b): a * b[0],
                zip(layer_modules_list, sum_weights_list[i + 1]))) / M

    # full connection layer
    # reshape
    _shape = net.shape[1:]
    _length = 1
    for _i in _shape:
        _length *= int(_i)
    net = tf.reshape(net, [-1, _length])

    # full connection
    for i in range(L)[len(FL) + 1:]:
        for j in range(M):
            layer_modules_list[j], weights_list[i, j], biases_list[
                i, j] = pathnet.fc_layer(
                    sum_weights_list[i][j][1] * net, F, geopath[i, j],
                    'fc_layer' + str(i + 1) + "_" + str(j + 1))
        net = np.sum(
            map(lambda (a, b): a * b[0],
                zip(layer_modules_list, sum_weights_list[i]))) / M

    # output layer
    y, output_weights, output_biases = pathnet.nn_layer(
        net, 10, 'output_layer' + str(i))

    # Cross Entropy
    with tf.name_scope('cross_entropy'):
        diff = tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y)
        with tf.name_scope('total'):
            cross_entropy = tf.reduce_mean(diff)

    # Need to learn variables
    var_list_to_learn = [] + output_weights + output_biases
    for i in range(L):
        # disabled layer don't have argvs to learn
        if i > 0 and i < candidate.maxFr + 1 and candidate.disable_mask[
                i - 1] == 1:
            continue
        for j in range(M):
            if (fixed_list[i, j] == '0'):
                var_list_to_learn += weights_list[i, j] + biases_list[
                    i, j] + sum_weights_list[i, j]

    # GradientDescent
    with tf.name_scope('train'):
        train_step = tf.train.AdamOptimizer(FLAGS.learning_rate).minimize(
            cross_entropy, var_list=var_list_to_learn)

    # Accuracy
    with tf.name_scope('accuracy'):
        with tf.name_scope('correct_prediction'):
            correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
        with tf.name_scope('accuracy'):
            accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

    # init
    tf.global_variables_initializer().run()

    # Learning & Evaluating
    # Shuffle the data
    #idx=range(len(tr_data1))
    #np.random.shuffle(idx)
    #tr_data1=tr_data1[idx]
    #tr_label1=tr_label1[idx]

    step_list = [max_data_len for i in range(int(max_steps / max_data_len))
                 ] + [max_steps % max_data_len]
    counter = 0
    acc_geo_tr = 0
    #print(step_list)
    #print(max_data_len)
    #print("max_steps: "+max_steps)
    for s in step_list:
        idx = range(len(tr_data1))
        np.random.shuffle(idx)
        tr_data1 = tr_data1[idx]
        tr_label1 = tr_label1[idx]
        for k in range(s):
            _, acc_geo_tmp = sess.run(
                [train_step, accuracy],
                feed_dict={
                    x:
                    tr_data1[k * FLAGS.batch_num:(k + 1) * FLAGS.batch_num, :],
                    y_: tr_label1[k * FLAGS.batch_num:(k + 1) *
                                  FLAGS.batch_num, :],
                    keep_prob: FLAGS.dropout
                })

            acc_geo_tr += acc_geo_tmp
            counter += 1
            if (counter > 100 and counter % 1000 == 0):
                print("step %d, single_acc %f" % (counter, acc_geo_tmp))

            # test on test set
            if (counter % 100 == 0):
                test_acc = []
                for i in range(100):
                    test_acc += [
                        sess.run(accuracy,
                                 feed_dict={
                                     x: ts_data1[i * 100:(i + 1) * 100, :],
                                     y_: ts_label1[i * 100:(i + 1) * 100, :],
                                     keep_prob: 1
                                 })
                    ]
                print("step %d, acc_on_test_set %f" %
                      (counter, sum(test_acc) / 100))

    sess.close()

    return acc_geo_tr / max_steps
Exemple #2
0
def train():
    # Import data
    mnist = input_data.read_data_sets(FLAGS.data_dir,
                                      one_hot=True,
                                      fake_data=FLAGS.fake_data)
    total_tr_data, total_tr_label = mnist.train.next_batch(
        mnist.train._num_examples)

    # Gathering a1 Data
    tr_data_a1 = total_tr_data[(total_tr_label[:, FLAGS.a1] == 1.0)]
    for i in range(len(tr_data_a1)):
        for j in range(len(tr_data_a1[0])):
            rand_num = np.random.rand()
            if (rand_num >= 0.5):
                tr_data_a1[i, j] = np.minimum(tr_data_a1[i, j] + rand_num, 1.0)

    # Gathering a2 Data
    tr_data_a2 = total_tr_data[(total_tr_label[:, FLAGS.a2] == 1.0)]
    for i in range(len(tr_data_a2)):
        for j in range(len(tr_data_a2[0])):
            rand_num = np.random.rand()
            if (rand_num >= 0.5):
                tr_data_a2[i, j] = np.minimum(tr_data_a2[i, j] + rand_num, 1.0)

    # Gathering b1 Data
    tr_data_b1 = total_tr_data[(total_tr_label[:, FLAGS.b1] == 1.0)]
    for i in range(len(tr_data_b1)):
        for j in range(len(tr_data_b1[0])):
            rand_num = np.random.rand()
            if (rand_num >= 0.5):
                tr_data_b1[i, j] = np.minimum(tr_data_b1[i, j] + rand_num, 1.0)

    # Gathering b2 Data
    tr_data_b2 = total_tr_data[(total_tr_label[:, FLAGS.b2] == 1.0)]
    for i in range(len(tr_data_b2)):
        for j in range(len(tr_data_b2[0])):
            rand_num = np.random.rand()
            if (rand_num >= 0.5):
                tr_data_b2[i, j] = np.minimum(tr_data_b2[i, j] + rand_num, 1.0)

    tr_data1 = np.append(tr_data_a1, tr_data_a2, axis=0)
    tr_label1 = np.zeros((len(tr_data1), 2), dtype=float)
    for i in range(len(tr_data1)):
        if (i < len(tr_data_a1)):
            tr_label1[i, 0] = 1.0
        else:
            tr_label1[i, 1] = 1.0

    tr_data2 = np.append(tr_data_b1, tr_data_b2, axis=0)
    tr_label2 = np.zeros((len(tr_data2), 2), dtype=float)
    for i in range(len(tr_data2)):
        if (i < len(tr_data_b1)):
            tr_label2[i, 0] = 1.0
        else:
            tr_label2[i, 1] = 1.0

    ## TASK 1
    sess = tf.InteractiveSession()

    # Input placeholders
    with tf.name_scope('input'):
        x = tf.placeholder(tf.float32, [None, 784], name='x-input')
        y_ = tf.placeholder(tf.float32, [None, 2], name='y-input')

    with tf.name_scope('input_reshape'):
        image_shaped_input = tf.reshape(x, [-1, 28, 28, 1])
        tf.summary.image('input', image_shaped_input, 2)

    # geopath_examples
    geopath = pathnet.geopath_initializer(FLAGS.L, FLAGS.M)

    # fixed weights list
    fixed_list = np.ones((FLAGS.L, FLAGS.M), dtype=str)
    for i in range(FLAGS.L):
        for j in range(FLAGS.M):
            fixed_list[i, j] = '0'

    # Hidden Layers
    weights_list = np.zeros(
        (FLAGS.L, FLAGS.M),
        dtype=object)  # weights_list also record conv_kernels
    biases_list = np.zeros((FLAGS.L, FLAGS.M), dtype=object)

    # model define
    layer_modules_list = np.zeros(FLAGS.M, dtype=object)
    # conv layer
    i = 0
    for j in range(FLAGS.M):
        layer_modules_list[j], weights_list[i, j], biases_list[
            i,
            j] = pathnet.conv_module(image_shaped_input, FLAGS.filt, [5, 5],
                                     geopath[i, j], 1,
                                     'layer' + str(i + 1) + "_" + str(j + 1))
    net = np.sum(layer_modules_list) / FLAGS.M
    # res-fire layer
    i = 1
    for j in range(FLAGS.M):
        layer_modules_list[j], weights_list[i, j], biases_list[
            i, j] = pathnet.res_fire_layer(
                net, FLAGS.filt, 10, 10, geopath[i, j],
                'layer' + str(i + 1) + "_" + str(j + 1))
    net = np.sum(layer_modules_list) / FLAGS.M
    # dimensionality_reduction layer
    i = 2
    for j in range(FLAGS.M):
        layer_modules_list[j], weights_list[i, j], biases_list[
            i, j] = pathnet.Dimensionality_reduction_module(
                net, 10, geopath[i, j],
                'layer' + str(i + 1) + "_" + str(j + 1))
    net = np.sum(layer_modules_list) / FLAGS.M
    # conv layer
    i = 3
    for j in range(FLAGS.M):
        layer_modules_list[j], weights_list[i, j], biases_list[
            i,
            j] = pathnet.conv_module(image_shaped_input, FLAGS.filt, [5, 5],
                                     geopath[i, j], 1,
                                     'layer' + str(i + 1) + "_" + str(j + 1))
    net = np.sum(layer_modules_list) / FLAGS.M
    # output layer
    # reshape
    _shape = net.shape[1:]
    _length = 1
    for _i in _shape:
        _length *= int(_i)
    net = tf.reshape(net, [-1, _length])
    # full connection layer
    y, output_weights, output_biases = pathnet.nn_layer(
        net, 2, 'output_layer')

    # Cross Entropy
    with tf.name_scope('cross_entropy'):
        diff = tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y)
        with tf.name_scope('total'):
            cross_entropy = tf.reduce_mean(diff)
    tf.summary.scalar('cross_entropy', cross_entropy)

    # Need to learn variables
    var_list_to_learn = [] + output_weights + output_biases
    for i in range(FLAGS.L):
        for j in range(FLAGS.M):
            if (fixed_list[i, j] == '0'):
                var_list_to_learn += weights_list[i, j] + biases_list[i, j]

    # GradientDescent
    with tf.name_scope('train'):
        train_step = tf.train.GradientDescentOptimizer(
            FLAGS.learning_rate).minimize(cross_entropy,
                                          var_list=var_list_to_learn)

    # Accuracy
    with tf.name_scope('accuracy'):
        with tf.name_scope('correct_prediction'):
            correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
        with tf.name_scope('accuracy'):
            accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    tf.summary.scalar('accuracy', accuracy)

    # Merge all the summaries and write them out to /tmp/tensorflow/mnist/logs/mnist_with_summaries (by default)
    merged = tf.summary.merge_all()
    train_writer = tf.summary.FileWriter(FLAGS.log_dir + '/train1', sess.graph)
    test_writer = tf.summary.FileWriter(FLAGS.log_dir + '/test1')

    tf.global_variables_initializer().run()

    # Generating randomly geopath
    geopath_set = np.zeros(FLAGS.candi, dtype=object)
    for i in range(FLAGS.candi):
        geopath_set[i] = pathnet.get_geopath(FLAGS.L, FLAGS.M, FLAGS.N)

    # parameters placeholders and ops
    var_update_ops = np.zeros(len(var_list_to_learn), dtype=object)
    var_update_placeholders = np.zeros(len(var_list_to_learn), dtype=object)
    for i in range(len(var_list_to_learn)):
        var_update_placeholders[i] = tf.placeholder(
            var_list_to_learn[i].dtype, shape=var_list_to_learn[i].get_shape())
        var_update_ops[i] = var_list_to_learn[i].assign(
            var_update_placeholders[i])

    # geopathes placeholders and ops
    geopath_update_ops = np.zeros((len(geopath), len(geopath[0])),
                                  dtype=object)
    geopath_update_placeholders = np.zeros((len(geopath), len(geopath[0])),
                                           dtype=object)
    for i in range(len(geopath)):
        for j in range(len(geopath[0])):
            geopath_update_placeholders[i, j] = tf.placeholder(
                geopath[i, j].dtype, shape=geopath[i, j].get_shape())
            geopath_update_ops[i, j] = geopath[i, j].assign(
                geopath_update_placeholders[i, j])

    acc_geo = np.zeros(FLAGS.B, dtype=float)
    summary_geo = np.zeros(FLAGS.B, dtype=object)
    for i in range(FLAGS.max_steps):
        # Select Candidates to Tournament
        compet_idx = range(FLAGS.candi)
        np.random.shuffle(compet_idx)
        compet_idx = compet_idx[:FLAGS.B]
        # Learning & Evaluating
        for j in range(len(compet_idx)):
            # Shuffle the data
            idx = range(len(tr_data1))
            np.random.shuffle(idx)
            tr_data1 = tr_data1[idx]
            tr_label1 = tr_label1[idx]
            # Insert Candidate
            pathnet.geopath_insert(sess, geopath_update_placeholders,
                                   geopath_update_ops,
                                   geopath_set[compet_idx[j]], FLAGS.L,
                                   FLAGS.M)
            acc_geo_tr = 0
            for k in range(FLAGS.T):
                summary_geo_tr, _, acc_geo_tmp = sess.run(
                    [merged, train_step, accuracy],
                    feed_dict={
                        x:
                        tr_data1[k * FLAGS.batch_num:(k + 1) *
                                 FLAGS.batch_num, :],
                        y_:
                        tr_label1[k * FLAGS.batch_num:(k + 1) *
                                  FLAGS.batch_num, :]
                    })
                acc_geo_tr += acc_geo_tmp
            acc_geo[j] = acc_geo_tr / FLAGS.T
            summary_geo[j] = summary_geo_tr
        # Tournament
        winner_idx = np.argmax(acc_geo)
        acc = acc_geo[winner_idx]
        summary = summary_geo[winner_idx]
        # Copy and Mutation
        for j in range(len(compet_idx)):
            if (j != winner_idx):
                geopath_set[compet_idx[j]] = np.copy(
                    geopath_set[compet_idx[winner_idx]])
                geopath_set[compet_idx[j]] = pathnet.mutation(
                    geopath_set[compet_idx[j]], FLAGS.L, FLAGS.M, FLAGS.N)
        train_writer.add_summary(summary, i)
        print('Training Accuracy at step %s: %s' % (i, acc))
        if (acc >= 0.99):
            print('Learning Done!!')
            print('Optimal Path is as followed.')
            print(geopath_set[compet_idx[winner_idx]])
            task1_optimal_path = geopath_set[compet_idx[winner_idx]]
            break
        """
    geopath_sum=np.zeros((len(geopath),len(geopath[0])),dtype=float);
    for j in range(len(geopath_set)):
      for k in range(len(geopath)):
        for l in range(len(geopath[0])):
          geopath_sum[k][l]+=geopath_set[j][k][l];
    print(geopath_sum);
    """
    # record steps to find optimal path in task1
    iter_task1 = i

    # Fix task1 Optimal Path
    for i in range(FLAGS.L):
        for j in range(FLAGS.M):
            if (task1_optimal_path[i, j] == 1.0):
                fixed_list[i, j] = '1'

    # Get variables of fixed list
    var_list_to_fix = []
    #var_list_to_fix=[]+output_weights+output_biases;
    for i in range(FLAGS.L):
        for j in range(FLAGS.M):
            if (fixed_list[i, j] == '1'):
                var_list_to_fix += weights_list[i, j] + biases_list[i, j]
    var_list_fix = pathnet.parameters_backup(var_list_to_fix)
    """
  for i in range(FLAGS.L):
    for j in range(FLAGS.M):
      if(task1_optimal_path[i,j]==1.0):
        fixed_list[i,j]='0';
  """

    # parameters placeholders and ops
    var_fix_ops = np.zeros(len(var_list_to_fix), dtype=object)
    var_fix_placeholders = np.zeros(len(var_list_to_fix), dtype=object)
    for i in range(len(var_list_to_fix)):
        var_fix_placeholders[i] = tf.placeholder(
            var_list_to_fix[i].dtype, shape=var_list_to_fix[i].get_shape())
        var_fix_ops[i] = var_list_to_fix[i].assign(var_fix_placeholders[i])

    ## TASK 2
    # Need to learn variables
    var_list_to_learn = [] + output_weights + output_biases
    for i in range(FLAGS.L):
        for j in range(FLAGS.M):
            if (fixed_list[i, j] == '0'):
                var_list_to_learn += weights_list[i, j] + biases_list[i, j]
    '''
  for i in range(FLAGS.L):
    for j in range(FLAGS.M):
      if(fixed_list[i,j]=='1'):
        tmp=biases_list[i,j][0];
        break;
    break;
  '''

    # Initialization
    merged = tf.summary.merge_all()
    train_writer = tf.summary.FileWriter(FLAGS.log_dir + '/train2', sess.graph)
    test_writer = tf.summary.FileWriter(FLAGS.log_dir + '/test2')
    tf.global_variables_initializer().run()

    # Update fixed values
    pathnet.parameters_update(sess, var_fix_placeholders, var_fix_ops,
                              var_list_fix)

    # GradientDescent
    with tf.name_scope('train'):
        train_step = tf.train.GradientDescentOptimizer(
            FLAGS.learning_rate).minimize(cross_entropy,
                                          var_list=var_list_to_learn)

    # Generating randomly geopath
    geopath_set = np.zeros(FLAGS.candi, dtype=object)
    for i in range(FLAGS.candi):
        geopath_set[i] = pathnet.get_geopath(FLAGS.L, FLAGS.M, FLAGS.N)

    # parameters placeholders and ops
    var_update_ops = np.zeros(len(var_list_to_learn), dtype=object)
    var_update_placeholders = np.zeros(len(var_list_to_learn), dtype=object)
    for i in range(len(var_list_to_learn)):
        var_update_placeholders[i] = tf.placeholder(
            var_list_to_learn[i].dtype, shape=var_list_to_learn[i].get_shape())
        var_update_ops[i] = var_list_to_learn[i].assign(
            var_update_placeholders[i])

    acc_geo = np.zeros(FLAGS.B, dtype=float)
    summary_geo = np.zeros(FLAGS.B, dtype=object)
    for i in range(FLAGS.max_steps):
        # Select Candidates to Tournament
        compet_idx = range(FLAGS.candi)
        np.random.shuffle(compet_idx)
        compet_idx = compet_idx[:FLAGS.B]
        # Learning & Evaluating
        for j in range(len(compet_idx)):
            # Shuffle the data
            idx = range(len(tr_data2))
            np.random.shuffle(idx)
            tr_data2 = tr_data2[idx]
            tr_label2 = tr_label2[idx]
            geopath_insert = np.copy(geopath_set[compet_idx[j]])

            for l in range(FLAGS.L):
                for m in range(FLAGS.M):
                    if (fixed_list[l, m] == '1'):
                        geopath_insert[l, m] = 1.0

            # Insert Candidate
            pathnet.geopath_insert(sess, geopath_update_placeholders,
                                   geopath_update_ops, geopath_insert, FLAGS.L,
                                   FLAGS.M)
            acc_geo_tr = 0
            for k in range(FLAGS.T):
                summary_geo_tr, _, acc_geo_tmp = sess.run(
                    [merged, train_step, accuracy],
                    feed_dict={
                        x:
                        tr_data2[k * FLAGS.batch_num:(k + 1) *
                                 FLAGS.batch_num, :],
                        y_:
                        tr_label2[k * FLAGS.batch_num:(k + 1) *
                                  FLAGS.batch_num, :]
                    })
                acc_geo_tr += acc_geo_tmp
            acc_geo[j] = acc_geo_tr / FLAGS.T
            summary_geo[j] = summary_geo_tr
        # Tournament
        winner_idx = np.argmax(acc_geo)
        acc = acc_geo[winner_idx]
        summary = summary_geo[winner_idx]
        # Copy and Mutation
        for j in range(len(compet_idx)):
            if (j != winner_idx):
                geopath_set[compet_idx[j]] = np.copy(
                    geopath_set[compet_idx[winner_idx]])
                geopath_set[compet_idx[j]] = pathnet.mutation(
                    geopath_set[compet_idx[j]], FLAGS.L, FLAGS.M, FLAGS.N)
        train_writer.add_summary(summary, i)
        print('Training Accuracy at step %s: %s' % (i, acc))
        if (acc >= 0.99):
            print('Learning Done!!')
            print('Optimal Path is as followed.')
            print(geopath_set[compet_idx[winner_idx]])
            task2_optimal_path = geopath_set[compet_idx[winner_idx]]
            break
        """
    geopath_sum=np.zeros((len(geopath),len(geopath[0])),dtype=float);
    for j in range(len(geopath_set)):
      for k in range(len(geopath)):
        for l in range(len(geopath[0])):
          geopath_sum[k][l]+=geopath_set[j][k][l];
    print(geopath_sum);
    """

    iter_task2 = i
    overlap = 0
    for i in range(len(task1_optimal_path)):
        for j in range(len(task1_optimal_path[0])):
            if (task1_optimal_path[i, j] == task2_optimal_path[i, j]) & (
                    task1_optimal_path[i, j] == 1.0):
                overlap += 1
    print("Entire Iter:" + str(iter_task1 + iter_task2) + ",TASK1:" +
          str(iter_task1) + ",TASK2:" + str(iter_task2) + ",Overlap:" +
          str(overlap))

    train_writer.close()
    test_writer.close()
def train():
    # Get SVHN dataset
    svhn_maybe_download_and_extract()
    file_name = os.path.join(FLAGS.svhn_data_dir, "train_32x32.mat")
    train = sio.loadmat(file_name)
    tr_data_svhn = np.zeros((len(train['y']), 32 * 32 * 3), dtype=float)
    tr_label_svhn = np.zeros((len(train['y']), 10), dtype=float)
    for i in range(len(train['y'])):
        tr_data_svhn[i] = np.reshape(train['X'][:, :, :, i], [1, 32 * 32 * 3])
        tr_label_svhn[i, train['y'][i][0] - 1] = 1.0
    tr_data_svhn = tr_data_svhn / 255.0

    file_name = os.path.join(FLAGS.svhn_data_dir, "test_32x32.mat")
    test = sio.loadmat(file_name)
    ts_data_svhn = np.zeros((len(test['y']), 32 * 32 * 3), dtype=float)
    ts_label_svhn = np.zeros((len(test['y']), 10), dtype=float)
    for i in range(len(test['y'])):
        ts_data_svhn[i] = np.reshape(test['X'][:, :, :, i], [1, 32 * 32 * 3])
        ts_label_svhn[i, test['y'][i][0] - 1] = 1.0
    ts_data_svhn = ts_data_svhn / 255.0
    data_num_len_svhn = len(tr_label_svhn)

    # Get CIFAR 10  dataset
    cifar10.maybe_download_and_extract()
    tr_label_cifar10 = np.zeros((50000, 10), dtype=float)
    ts_label_cifar10 = np.zeros((10000, 10), dtype=float)
    for i in range(1, 6):
        file_name = os.path.join(FLAGS.cifar_data_dir,
                                 "data_batch_" + str(i) + ".bin")
        f = open(file_name, "rb")
        data = np.reshape(bytearray(f.read()), [10000, 3073])
        if (i == 1):
            tr_data_cifar10 = data[:, 1:] / 255.0
        else:
            tr_data_cifar10 = np.append(tr_data_cifar10,
                                        data[:, 1:] / 255.0,
                                        axis=0)
        for j in range(len(data)):
            tr_label_cifar10[(i - 1) * 10000 + j, data[j, 0]] = 1.0
    file_name = os.path.join(FLAGS.cifar_data_dir, "test_batch.bin")
    f = open(file_name, "rb")
    data = np.reshape(bytearray(f.read()), [10000, 3073])
    for i in range(len(data)):
        ts_label_cifar10[i, data[i, 0]] = 1.0
    ts_data_cifar10 = data[:, 1:] / 255.0
    data_num_len_cifar10 = len(tr_label_cifar10)

    print(ts_label_cifar10.shape)
    print(ts_label_cifar10[0])
    if (FLAGS.cifar_first):
        tr_data1 = tr_data_cifar10
        tr_label1 = tr_label_cifar10
        ts_data1 = ts_data_cifar10
        ts_label1 = ts_label_cifar10
        data_num_len1 = data_num_len_cifar10
        tr_data2 = tr_data_svhn
        tr_label2 = tr_label_svhn
        ts_data2 = ts_data_svhn
        ts_label2 = ts_label_svhn
        data_num_len2 = data_num_len_svhn
    else:
        tr_data1 = tr_data_svhn
        tr_label1 = tr_label_svhn
        ts_data1 = ts_data_svhn
        ts_label1 = ts_label_svhn
        data_num_len1 = data_num_len_svhn
        tr_data2 = tr_data_cifar10
        tr_label2 = tr_label_cifar10
        ts_data2 = ts_data_cifar10
        ts_label2 = ts_label_cifar10
        data_num_len2 = data_num_len_cifar10

    ## TASK 1
    sess = tf.InteractiveSession()

    # Input placeholders
    with tf.name_scope('input'):
        x = tf.placeholder(tf.float32, [None, 32 * 32 * 3], name='x-input')
        y_ = tf.placeholder(tf.float32, [None, 10], name='y-input')

    with tf.name_scope('input_reshape'):
        image_shaped_input = tf.reshape(x, [-1, 32, 32, 3])
        tf.summary.image('input', image_shaped_input, 2)

    # geopath_examples
    geopath = pathnet.geopath_initializer(FLAGS.L, FLAGS.M)

    # fixed weights list
    fixed_list = np.ones((FLAGS.L, FLAGS.M), dtype=str)
    for i in range(FLAGS.L):
        for j in range(FLAGS.M):
            fixed_list[i, j] = '0'

    # Hidden Layers
    weights_list = np.zeros((FLAGS.L, FLAGS.M), dtype=object)
    biases_list = np.zeros((FLAGS.L, FLAGS.M), dtype=object)

    # model define
    layer_modules_list = np.zeros(FLAGS.M, dtype=object)
    # conv layer
    i = 0
    for j in range(FLAGS.M):
        layer_modules_list[j], weights_list[i, j], biases_list[
            i,
            j] = pathnet.conv_module(image_shaped_input, FLAGS.filt, [5, 5],
                                     geopath[i, j], 1,
                                     'layer' + str(i + 1) + "_" + str(j + 1))
    net = np.sum(layer_modules_list) / FLAGS.M
    # res-fire layer
    i = 1
    for j in range(FLAGS.M):
        layer_modules_list[j], weights_list[i, j], biases_list[
            i, j] = pathnet.res_fire_layer(
                net, FLAGS.filt, 10, 10, geopath[i, j],
                'layer' + str(i + 1) + "_" + str(j + 1))
    net = np.sum(layer_modules_list) / FLAGS.M
    # dimensionality_reduction layer
    i = 2
    for j in range(FLAGS.M):
        layer_modules_list[j], weights_list[i, j], biases_list[
            i, j] = pathnet.Dimensionality_reduction_module(
                net, 10, geopath[i, j],
                'layer' + str(i + 1) + "_" + str(j + 1))
    net = np.sum(layer_modules_list) / FLAGS.M
    # conv layer
    i = 3
    for j in range(FLAGS.M):
        layer_modules_list[j], weights_list[i, j], biases_list[
            i,
            j] = pathnet.conv_module(image_shaped_input, FLAGS.filt, [5, 5],
                                     geopath[i, j], 1,
                                     'layer' + str(i + 1) + "_" + str(j + 1))
    net = np.sum(layer_modules_list) / FLAGS.M
    # output layer
    # reshape
    _shape = net.shape[1:]
    _length = 1
    for _i in _shape:
        _length *= int(_i)
    net = tf.reshape(net, [-1, _length])
    # full connection layer
    y, output_weights, output_biases = pathnet.nn_layer(
        net, 10, 'output_layer')

    # Cross Entropy
    with tf.name_scope('cross_entropy'):
        diff = tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y)
        with tf.name_scope('total'):
            cross_entropy = tf.reduce_mean(diff)
    tf.summary.scalar('cross_entropy', cross_entropy)

    # Need to learn variables
    var_list_to_learn = [] + output_weights + output_biases
    for i in range(FLAGS.L):
        for j in range(FLAGS.M):
            if (fixed_list[i, j] == '0'):
                var_list_to_learn += weights_list[i, j] + biases_list[i, j]

    # GradientDescent
    with tf.name_scope('train'):
        train_step = tf.train.GradientDescentOptimizer(
            FLAGS.learning_rate).minimize(cross_entropy,
                                          var_list=var_list_to_learn)

    # Accuracy
    with tf.name_scope('accuracy'):
        with tf.name_scope('correct_prediction'):
            correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
        with tf.name_scope('accuracy'):
            accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    tf.summary.scalar('accuracy', accuracy)

    # Merge all the summaries and write them out to /tmp/tensorflow/mnist/logs/mnist_with_summaries (by default)
    merged = tf.summary.merge_all()
    train_writer = tf.summary.FileWriter(FLAGS.log_dir + '/train1', sess.graph)
    test_writer = tf.summary.FileWriter(FLAGS.log_dir + '/test1')
    tf.global_variables_initializer().run()

    # Generating randomly geopath
    geopath_set = np.zeros(FLAGS.candi, dtype=object)
    for i in range(FLAGS.candi):
        geopath_set[i] = pathnet.get_geopath(FLAGS.L, FLAGS.M, FLAGS.N)

    # parameters placeholders and ops
    var_update_ops = np.zeros(len(var_list_to_learn), dtype=object)
    var_update_placeholders = np.zeros(len(var_list_to_learn), dtype=object)
    for i in range(len(var_list_to_learn)):
        var_update_placeholders[i] = tf.placeholder(
            var_list_to_learn[i].dtype, shape=var_list_to_learn[i].get_shape())
        var_update_ops[i] = var_list_to_learn[i].assign(
            var_update_placeholders[i])

    # geopathes placeholders and ops
    geopath_update_ops = np.zeros((len(geopath), len(geopath[0])),
                                  dtype=object)
    geopath_update_placeholders = np.zeros((len(geopath), len(geopath[0])),
                                           dtype=object)
    for i in range(len(geopath)):
        for j in range(len(geopath[0])):
            geopath_update_placeholders[i, j] = tf.placeholder(
                geopath[i, j].dtype, shape=geopath[i, j].get_shape())
            geopath_update_ops[i, j] = geopath[i, j].assign(
                geopath_update_placeholders[i, j])

    acc_geo = np.zeros(FLAGS.B, dtype=float)
    summary_geo = np.zeros(FLAGS.B, dtype=object)
    for i in range(FLAGS.max_steps):
        # Select Candidates to Tournament
        compet_idx = range(FLAGS.candi)
        np.random.shuffle(compet_idx)
        compet_idx = compet_idx[:FLAGS.B]
        # Learning & Evaluating
        for j in range(len(compet_idx)):
            # Shuffle the data
            idx = range(len(tr_data1))
            np.random.shuffle(idx)
            tr_data1 = tr_data1[idx]
            tr_label1 = tr_label1[idx]
            # Insert Candidate
            pathnet.geopath_insert(sess, geopath_update_placeholders,
                                   geopath_update_ops,
                                   geopath_set[compet_idx[j]], FLAGS.L,
                                   FLAGS.M)
            acc_geo_tr = 0
            for k in range(FLAGS.T):
                '''
        print(x.shape)
        print(tr_data1[k*FLAGS.batch_num:(k+1)*FLAGS.batch_num,:].shape)
        print(y.shape)
        print(tr_label1[k*FLAGS.batch_num:(k+1)*FLAGS.batch_num,:].shape)
        '''
                summary_geo_tr, _, acc_geo_tmp = sess.run(
                    [merged, train_step, accuracy],
                    feed_dict={
                        x:
                        tr_data1[k * FLAGS.batch_num:(k + 1) *
                                 FLAGS.batch_num, :],
                        y_:
                        tr_label1[k * FLAGS.batch_num:(k + 1) *
                                  FLAGS.batch_num, :]
                    })
                acc_geo_tr += acc_geo_tmp
            acc_geo[j] = acc_geo_tr / FLAGS.T
            summary_geo[j] = summary_geo_tr
        # Tournament
        winner_idx = np.argmax(acc_geo)
        acc = acc_geo[winner_idx]
        summary = summary_geo[winner_idx]
        # Copy and Mutation
        for j in range(len(compet_idx)):
            if (j != winner_idx):
                geopath_set[compet_idx[j]] = np.copy(
                    geopath_set[compet_idx[winner_idx]])
                geopath_set[compet_idx[j]] = pathnet.mutation(
                    geopath_set[compet_idx[j]], FLAGS.L, FLAGS.M, FLAGS.N)
        train_writer.add_summary(summary, i)
        print('Training Accuracy at step %s: %s' % (i, acc))

    acc_task1 = acc
    task1_optimal_path = geopath_set[compet_idx[winner_idx]]

    # Fix task1 Optimal Path
    for i in range(FLAGS.L):
        for j in range(FLAGS.M):
            if (task1_optimal_path[i, j] == 1.0):
                fixed_list[i, j] = '1'

    # Get variables of fixed list
    var_list_to_fix = []
    #var_list_to_fix=[]+output_weights+output_biases;
    for i in range(FLAGS.L):
        for j in range(FLAGS.M):
            if (fixed_list[i, j] == '1'):
                var_list_to_fix += weights_list[i, j] + biases_list[i, j]
    var_list_fix = pathnet.parameters_backup(var_list_to_fix)

    # parameters placeholders and ops
    var_fix_ops = np.zeros(len(var_list_to_fix), dtype=object)
    var_fix_placeholders = np.zeros(len(var_list_to_fix), dtype=object)
    for i in range(len(var_list_to_fix)):
        var_fix_placeholders[i] = tf.placeholder(
            var_list_to_fix[i].dtype, shape=var_list_to_fix[i].get_shape())
        var_fix_ops[i] = var_list_to_fix[i].assign(var_fix_placeholders[i])

    ## TASK 2
    # Need to learn variables
    var_list_to_learn = [] + output_weights + output_biases
    for i in range(FLAGS.L):
        for j in range(FLAGS.M):
            if (fixed_list[i, j] == '0'):
                var_list_to_learn += weights_list[i, j] + biases_list[i, j]

    for i in range(FLAGS.L):
        for j in range(FLAGS.M):
            if (fixed_list[i, j] == '1'):
                tmp = biases_list[i, j][0]
                break
        break

    # Initialization
    merged = tf.summary.merge_all()
    train_writer = tf.summary.FileWriter(FLAGS.log_dir + '/train2', sess.graph)
    test_writer = tf.summary.FileWriter(FLAGS.log_dir + '/test2')
    tf.global_variables_initializer().run()

    # Update fixed values
    pathnet.parameters_update(sess, var_fix_placeholders, var_fix_ops,
                              var_list_fix)

    # GradientDescent
    with tf.name_scope('train'):
        train_step = tf.train.GradientDescentOptimizer(
            FLAGS.learning_rate).minimize(cross_entropy,
                                          var_list=var_list_to_learn)

    # Generating randomly geopath
    geopath_set = np.zeros(FLAGS.candi, dtype=object)
    for i in range(FLAGS.candi):
        geopath_set[i] = pathnet.get_geopath(FLAGS.L, FLAGS.M, FLAGS.N)

    # parameters placeholders and ops
    var_update_ops = np.zeros(len(var_list_to_learn), dtype=object)
    var_update_placeholders = np.zeros(len(var_list_to_learn), dtype=object)
    for i in range(len(var_list_to_learn)):
        var_update_placeholders[i] = tf.placeholder(
            var_list_to_learn[i].dtype, shape=var_list_to_learn[i].get_shape())
        var_update_ops[i] = var_list_to_learn[i].assign(
            var_update_placeholders[i])

    acc_geo = np.zeros(FLAGS.B, dtype=float)
    summary_geo = np.zeros(FLAGS.B, dtype=object)
    for i in range(FLAGS.max_steps):
        # Select Candidates to Tournament
        compet_idx = range(FLAGS.candi)
        np.random.shuffle(compet_idx)
        compet_idx = compet_idx[:FLAGS.B]
        # Learning & Evaluating
        for j in range(len(compet_idx)):
            # Shuffle the data
            idx = range(len(tr_data2))
            np.random.shuffle(idx)
            tr_data2 = tr_data2[idx]
            tr_label2 = tr_label2[idx]
            geopath_insert = np.copy(geopath_set[compet_idx[j]])

            for l in range(FLAGS.L):
                for m in range(FLAGS.M):
                    if (fixed_list[l, m] == '1'):
                        geopath_insert[l, m] = 1.0

            # Insert Candidate
            pathnet.geopath_insert(sess, geopath_update_placeholders,
                                   geopath_update_ops, geopath_insert, FLAGS.L,
                                   FLAGS.M)
            acc_geo_tr = 0
            for k in range(FLAGS.T):
                summary_geo_tr, _, acc_geo_tmp = sess.run(
                    [merged, train_step, accuracy],
                    feed_dict={
                        x:
                        tr_data2[k * FLAGS.batch_num:(k + 1) *
                                 FLAGS.batch_num, :],
                        y_:
                        tr_label2[k * FLAGS.batch_num:(k + 1) *
                                  FLAGS.batch_num, :]
                    })
                acc_geo_tr += acc_geo_tmp
            acc_geo[j] = acc_geo_tr / FLAGS.T
            summary_geo[j] = summary_geo_tr
        # Tournament
        winner_idx = np.argmax(acc_geo)
        acc = acc_geo[winner_idx]
        summary = summary_geo[winner_idx]
        # Copy and Mutation
        for j in range(len(compet_idx)):
            if (j != winner_idx):
                geopath_set[compet_idx[j]] = np.copy(
                    geopath_set[compet_idx[winner_idx]])
                geopath_set[compet_idx[j]] = pathnet.mutation(
                    geopath_set[compet_idx[j]], FLAGS.L, FLAGS.M, FLAGS.N)
        train_writer.add_summary(summary, i)
        print('Training Accuracy at step %s: %s' % (i, acc))

    acc_task2 = acc

    if (FLAGS.cifar_first):
        print("CIFAR10_SVHN,TASK1:" + str(acc_task1) + ",TASK2:" +
              str(acc_task2) + ",Done")
    else:
        print("SVHN_CIFAR10,TASK1:" + str(acc_task1) + ",TASK2:" +
              str(acc_task2) + ",Done")

    train_writer.close()
    test_writer.close()
Exemple #4
0
def train():
    ## Get imageNet dataset file queue for task1 and task2
    tr_data1, tr_label1 = imagenet_data.create_file_queue(
        FLAGS.imagenet_data_dir1)
    tr_data2, tr_label2 = imagenet_data.create_file_queue(
        FLAGS.imagenet_data_dir2)

    ## TASK 1
    sess = tf.InteractiveSession()

    # Input placeholders
    with tf.name_scope('input'):
        x = tf.placeholder(tf.float32, [None, 224 * 224 * 3], name='x-input')
        y_ = tf.placeholder(tf.float32, [None, 10], name='y-input')

    with tf.name_scope('input_reshape'):
        image_shaped_input = tf.reshape(x, [-1, 224, 224, 3])
        tf.summary.image('input', image_shaped_input, 2)

    # geopath_examples
    geopath = pathnet.geopath_initializer(FLAGS.L, FLAGS.M)

    # fixed weights list
    fixed_list = np.ones((FLAGS.L, FLAGS.M), dtype=str)
    for i in range(FLAGS.L):
        for j in range(FLAGS.M):
            fixed_list[i, j] = '0'

    # Hidden Layers
    weights_list = np.zeros((FLAGS.L, FLAGS.M), dtype=object)
    biases_list = np.zeros((FLAGS.L, FLAGS.M), dtype=object)

    # model define
    layer_modules_list = np.zeros(FLAGS.M, dtype=object)
    # conv layer
    i = 0
    for j in range(FLAGS.M):
        layer_modules_list[j], weights_list[i, j], biases_list[
            i,
            j] = pathnet.conv_module(image_shaped_input, FLAGS.filt, [11, 11],
                                     geopath[i, j], 1,
                                     'layer' + str(i + 1) + "_" + str(j + 1))
    net = np.sum(layer_modules_list) / FLAGS.M
    # dimensionality_reduction layer
    i = 1
    for j in range(FLAGS.M):
        layer_modules_list[j], weights_list[i, j], biases_list[
            i, j] = pathnet.Dimensionality_reduction_module(
                net, FLAGS.filt / 2, geopath[i, j],
                'layer' + str(i + 1) + "_" + str(j + 1))
    net = np.sum(layer_modules_list) / FLAGS.M
    # res_fire layer
    i = 2
    for j in range(FLAGS.M):
        layer_modules_list[j], weights_list[i, j], biases_list[
            i, j] = pathnet.res_fire_layer(
                net, FLAGS.filt / 2, geopath[i, j],
                'layer' + str(i + 1) + "_" + str(j + 1))
    net = np.sum(layer_modules_list) / FLAGS.M
    # dimensionality_reduction layer
    i = 3
    for j in range(FLAGS.M):
        layer_modules_list[j], weights_list[i, j], biases_list[
            i, j] = pathnet.Dimensionality_reduction_module(
                net, FLAGS.filt / 2, geopath[i, j],
                'layer' + str(i + 1) + "_" + str(j + 1))
    net = np.sum(layer_modules_list) / FLAGS.M
    # reshape before full connection layer
    _shape = net.shape[1:]
    _length = 1
    for _i in _shape:
        _length *= int(_i)
    net = tf.reshape(net, [-1, _length])
    # model1 layer
    i = 4
    for j in range(FLAGS.M):
        layer_modules_list[j], weights_list[i, j], biases_list[
            i, j] = pathnet.module(net, FLAGS.full_connection_filt, geopath[i,
                                                                            j],
                                   'layer' + str(i + 1) + "_" + str(j + 1))
    net = np.sum(layer_modules_list) / FLAGS.M

    # output layer
    y, output_weights, output_biases = pathnet.nn_layer(
        net, 10, 'output_layer')

    # Cross Entropy
    with tf.name_scope('cross_entropy'):
        diff = tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y)
        with tf.name_scope('total'):
            cross_entropy = tf.reduce_mean(diff)
    tf.summary.scalar('cross_entropy', cross_entropy)

    # Need to learn variables
    var_list_to_learn = [] + output_weights + output_biases
    for i in range(FLAGS.L):
        for j in range(FLAGS.M):
            if (fixed_list[i, j] == '0'):
                var_list_to_learn += weights_list[i, j] + biases_list[i, j]

    # GradientDescent
    with tf.name_scope('train'):
        train_step = tf.train.GradientDescentOptimizer(
            FLAGS.learning_rate).minimize(cross_entropy,
                                          var_list=var_list_to_learn)

    # Accuracy
    with tf.name_scope('accuracy'):
        with tf.name_scope('correct_prediction'):
            correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
        with tf.name_scope('accuracy'):
            accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    tf.summary.scalar('accuracy', accuracy)

    # Merge all the summaries and write them out to /tmp/tensorflow/mnist/logs/mnist_with_summaries (by default)
    merged = tf.summary.merge_all()
    train_writer = tf.summary.FileWriter(FLAGS.log_dir + '/train1', sess.graph)
    test_writer = tf.summary.FileWriter(FLAGS.log_dir + '/test1')

    # init
    tf.global_variables_initializer().run()
    tf.local_variables_initializer().run()

    # start data reading queue
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)

    # Generating randomly geopath
    geopath_set = np.zeros(FLAGS.candi, dtype=object)
    for i in range(FLAGS.candi):
        geopath_set[i] = pathnet.get_geopath(FLAGS.L, FLAGS.M, FLAGS.N)

    # parameters placeholders and ops
    var_update_ops = np.zeros(len(var_list_to_learn), dtype=object)
    var_update_placeholders = np.zeros(len(var_list_to_learn), dtype=object)
    for i in range(len(var_list_to_learn)):
        var_update_placeholders[i] = tf.placeholder(
            var_list_to_learn[i].dtype, shape=var_list_to_learn[i].get_shape())
        var_update_ops[i] = var_list_to_learn[i].assign(
            var_update_placeholders[i])

    # geopathes placeholders and ops
    geopath_update_ops = np.zeros((len(geopath), len(geopath[0])),
                                  dtype=object)
    geopath_update_placeholders = np.zeros((len(geopath), len(geopath[0])),
                                           dtype=object)
    for i in range(len(geopath)):
        for j in range(len(geopath[0])):
            geopath_update_placeholders[i, j] = tf.placeholder(
                geopath[i, j].dtype, shape=geopath[i, j].get_shape())
            geopath_update_ops[i, j] = geopath[i, j].assign(
                geopath_update_placeholders[i, j])

    acc_geo = np.zeros(FLAGS.B, dtype=float)
    summary_geo = np.zeros(FLAGS.B, dtype=object)

    for i in range(FLAGS.max_steps):
        # Select Candidates to Tournament
        compet_idx = range(FLAGS.candi)
        np.random.shuffle(compet_idx)
        compet_idx = compet_idx[:FLAGS.B]
        # Learning & Evaluating
        for j in range(len(compet_idx)):
            # Insert Candidate
            pathnet.geopath_insert(sess, geopath_update_placeholders,
                                   geopath_update_ops,
                                   geopath_set[compet_idx[j]], FLAGS.L,
                                   FLAGS.M)
            acc_geo_tr = 0
            for k in range(FLAGS.T):
                '''
        print(x.shape)
        print(tr_data1[k*FLAGS.batch_num:(k+1)*FLAGS.batch_num,:].shape)
        print(y.shape)
        print(tr_label1[k*FLAGS.batch_num:(k+1)*FLAGS.batch_num,:].shape)
        '''
                tr_data1_val, tr_label1_val = imagenet_data.read_batch(
                    sess, tr_data1, tr_label1, FLAGS.batch_num,
                    FLAGS.imagenet_data_dir1)
                summary_geo_tr, _, acc_geo_tmp = sess.run(
                    [merged, train_step, accuracy],
                    feed_dict={
                        x: tr_data1_val,
                        y_: tr_label1_val
                    })
                acc_geo_tr += acc_geo_tmp
            acc_geo[j] = acc_geo_tr / FLAGS.T
            summary_geo[j] = summary_geo_tr
        # Tournament
        winner_idx = np.argmax(acc_geo)
        acc = acc_geo[winner_idx]
        summary = summary_geo[winner_idx]
        # Copy and Mutation
        for j in range(len(compet_idx)):
            if (j != winner_idx):
                geopath_set[compet_idx[j]] = np.copy(
                    geopath_set[compet_idx[winner_idx]])
                geopath_set[compet_idx[j]] = pathnet.mutation(
                    geopath_set[compet_idx[j]], FLAGS.L, FLAGS.M, FLAGS.N)
        train_writer.add_summary(summary, i)
        print('Training Accuracy at step %s: %s' % (i, acc))

        if i == FLAGS.max_steps - 1:
            acc_task1 = acc
            task1_optimal_path = geopath_set[compet_idx[winner_idx]]
            print('Task1 Optimal Path is as followed.')
            print(task1_optimal_path)

    # Fix task1 Optimal Path
    for i in range(FLAGS.L):
        for j in range(FLAGS.M):
            if (task1_optimal_path[i, j] == 1.0):
                fixed_list[i, j] = '1'

    # Get variables of fixed list
    var_list_to_fix = []
    #var_list_to_fix=[]+output_weights+output_biases;
    for i in range(FLAGS.L):
        for j in range(FLAGS.M):
            if (fixed_list[i, j] == '1'):
                var_list_to_fix += weights_list[i, j] + biases_list[i, j]
    var_list_fix = pathnet.parameters_backup(var_list_to_fix)

    # parameters placeholders and ops
    var_fix_ops = np.zeros(len(var_list_to_fix), dtype=object)
    var_fix_placeholders = np.zeros(len(var_list_to_fix), dtype=object)
    for i in range(len(var_list_to_fix)):
        var_fix_placeholders[i] = tf.placeholder(
            var_list_to_fix[i].dtype, shape=var_list_to_fix[i].get_shape())
        var_fix_ops[i] = var_list_to_fix[i].assign(var_fix_placeholders[i])

    ## TASK 2
    # Need to learn variables
    var_list_to_learn = [] + output_weights + output_biases
    for i in range(FLAGS.L):
        for j in range(FLAGS.M):
            if (fixed_list[i, j] == '0'):
                var_list_to_learn += weights_list[i, j] + biases_list[i, j]

    for i in range(FLAGS.L):
        for j in range(FLAGS.M):
            if (fixed_list[i, j] == '1'):
                tmp = biases_list[i, j][0]
                break
        break

    # Initialization
    merged = tf.summary.merge_all()
    train_writer = tf.summary.FileWriter(FLAGS.log_dir + '/train2', sess.graph)
    test_writer = tf.summary.FileWriter(FLAGS.log_dir + '/test2')
    tf.global_variables_initializer().run()
    tf.local_variables_initializer().run()

    # Update fixed values
    pathnet.parameters_update(sess, var_fix_placeholders, var_fix_ops,
                              var_list_fix)

    # GradientDescent
    with tf.name_scope('train'):
        train_step = tf.train.GradientDescentOptimizer(
            FLAGS.learning_rate).minimize(cross_entropy,
                                          var_list=var_list_to_learn)

    # Generating randomly geopath
    geopath_set = np.zeros(FLAGS.candi, dtype=object)
    for i in range(FLAGS.candi):
        geopath_set[i] = pathnet.get_geopath(FLAGS.L, FLAGS.M, FLAGS.N)

    # parameters placeholders and ops
    var_update_ops = np.zeros(len(var_list_to_learn), dtype=object)
    var_update_placeholders = np.zeros(len(var_list_to_learn), dtype=object)
    for i in range(len(var_list_to_learn)):
        var_update_placeholders[i] = tf.placeholder(
            var_list_to_learn[i].dtype, shape=var_list_to_learn[i].get_shape())
        var_update_ops[i] = var_list_to_learn[i].assign(
            var_update_placeholders[i])

    acc_geo = np.zeros(FLAGS.B, dtype=float)
    summary_geo = np.zeros(FLAGS.B, dtype=object)
    for i in range(FLAGS.max_steps):
        # Select Candidates to Tournament
        compet_idx = range(FLAGS.candi)
        np.random.shuffle(compet_idx)
        compet_idx = compet_idx[:FLAGS.B]
        # Learning & Evaluating
        for j in range(len(compet_idx)):
            geopath_insert = np.copy(geopath_set[compet_idx[j]])
            for l in range(FLAGS.L):
                for m in range(FLAGS.M):
                    if (fixed_list[l, m] == '1'):
                        geopath_insert[l, m] = 1.0

            # Insert Candidate
            pathnet.geopath_insert(sess, geopath_update_placeholders,
                                   geopath_update_ops, geopath_insert, FLAGS.L,
                                   FLAGS.M)
            acc_geo_tr = 0
            for k in range(FLAGS.T):
                tr_data2_val, tr_label2_val = imagenet_data.read_batch(
                    sess, tr_data2, tr_label2, FLAGS.batch_num,
                    FLAGS.imagenet_data_dir2)
                summary_geo_tr, _, acc_geo_tmp = sess.run(
                    [merged, train_step, accuracy],
                    feed_dict={
                        x: tr_data2_val,
                        y_: tr_label2_val
                    })
                acc_geo_tr += acc_geo_tmp
            acc_geo[j] = acc_geo_tr / FLAGS.T
            summary_geo[j] = summary_geo_tr
        # Tournament
        winner_idx = np.argmax(acc_geo)
        acc = acc_geo[winner_idx]
        summary = summary_geo[winner_idx]
        # Copy and Mutation
        for j in range(len(compet_idx)):
            if (j != winner_idx):
                geopath_set[compet_idx[j]] = np.copy(
                    geopath_set[compet_idx[winner_idx]])
                geopath_set[compet_idx[j]] = pathnet.mutation(
                    geopath_set[compet_idx[j]], FLAGS.L, FLAGS.M, FLAGS.N)
        train_writer.add_summary(summary, i)
        print('Training Accuracy at step %s: %s' % (i, acc))

        if i == FLAGS.max_steps - 1:
            acc_task2 = acc
            task2_optimal_path = geopath_set[compet_idx[winner_idx]]
            print('Task2 Optimal Path is as followed.')
            print(task2_optimal_path)

    # close data reading queue
    coord.request_stop()
    coord.join(threads)

    overlap = 0
    for i in range(len(task1_optimal_path)):
        for j in range(len(task1_optimal_path[0])):
            if (task1_optimal_path[i, j] == task2_optimal_path[i, j]) & (
                    task1_optimal_path[i, j] == 1.0):
                overlap += 1
    print("ImageNet,TASK1:" + str(acc_task1) + ",TASK2:" + str(acc_task2) +
          ", Overlap:" + str(overlap))

    train_writer.close()
    test_writer.close()