(1-np.exp(-(10**row['logh2column']/1e24)))), gmc=gmc) print("Chemical equilbrium temperature: ",T1) cool1 = gmc.dEdt(PsiUser=turb_heating_generator(lengthscale)) print("CO cooling: ",cool1['LambdaLine']['co']) print("O cooling: ",cool1['LambdaLine']['o']) print("C cooling: ",cool1['LambdaLine']['c']) print("C+ cooling: ",cool1['LambdaLine']['c+']) print("oH2 cooling: ",cool1['LambdaLine']['oh2']) print("pH2 cooling: ",cool1['LambdaLine']['ph2']) print("HD cooling: ",cool1['LambdaLine']['hd']) if __name__ == "__main__": import matplotlib matplotlib.rc_file(paths.pcpath('pubfiguresrc')) densities = np.logspace(3,7,20) tem = [tkin_all(n*u.cm**-3, 10*u.km/u.s, lengthscale=5*u.pc, gradient=5*u.km/u.s/u.pc, tdust=25*u.K, crir=1e-17*u.s**-1) for n in ProgressBar(densities)] pl.figure(1) pl.clf() pl.plot(densities, tem, 'k--', label='CRIR=1e-17, $\sigma=10$ km/s') pl.xlabel(r'$\log\,N_{\rm H}$') pl.ylabel('Temperature (K)') pl.xscale('log') pl.legend(loc='best') pl.savefig(paths.fpath("despotic/TvsN.png"))
row_data = mf.get_parconstraints() for key,value in row_data.iteritems(): row[key] = value width = row['width']*u.km/u.s row['reff_pc'] = reff.to(u.pc).value row['tkin_turb'] = heating.tkin_all(density=10**row['density_chi2']*u.cm**-3, sigma=width, lengthscale=reff, gradient=width/reff, tdust=row['higaldusttem']*u.K, crir=0./u.s) #if row_data['temperature_chi2'] == 10: # import ipdb; ipdb.set_trace() log.info("Completed source loop.") fittable.write(tpath('fitted_line_parameters_Chi2Constraints.ipac'), format='ascii.ipac') log.info("Wrote table file. Continuing to parameter plots.") execfile(paths.pcpath('parameter_comparisons.py')) pl.show()
from paths import pcpath execfile(pcpath('parameter_comparisons.py')) execfile(pcpath('dendrotem_plots.py')) execfile(pcpath('figure_ratio_maps.py')) execfile(pcpath('individual_full_spectra.py')) execfile(pcpath('integrated_data_figures.py')) execfile(pcpath('tmap_pv.py')) execfile(pcpath('t_vs_r.py')) # not included in pub: execfile(pcpath('tmap_compare.py')) # not included in publication (Jan 17): #execfile(pcpath('pyspeckit_region_figures.py'))
pl.savefig(outf, bbox_inches='tight') row_data = mf.get_parconstraints() for key, value in row_data.items(): row[key] = value width = row['width'] * u.km / u.s row['reff_pc'] = reff.to(u.pc).value row['tkin_turb'] = heating.tkin_all(density=10**row['density_chi2'] * u.cm**-3, sigma=width, lengthscale=reff, gradient=width / reff, tdust=row['higaldusttem'] * u.K, crir=0. / u.s) #if row_data['temperature_chi2'] == 10: # import ipdb; ipdb.set_trace() log.info("Completed source loop.") fittable.write(tpath('fitted_line_parameters_Chi2Constraints.ipac'), format='ascii.ipac') log.info("Wrote table file. Continuing to parameter plots.") execfile(paths.pcpath('parameter_comparisons.py')) pl.show()
from spectral_cube import SpectralCube, BooleanArrayMask, Projection import aplpy import pylab as pl import matplotlib import copy from paths import mpath,apath,fpath,molpath,hpath from astropy import units as u from astropy import coordinates from astropy.io import ascii, fits from astropy import log from astropy.wcs import WCS from astropy import wcs from piecewise_rtotem import pwtem import paths import matplotlib matplotlib.rc_file(paths.pcpath('pubfiguresrc')) # obsolete x,y = np.loadtxt(apath('orbit_K14.dat')).T table = ascii.read(apath('orbit_K14_2.dat'), format='basic', comment="#", guess=False) coords = coordinates.SkyCoord(table['l']*u.deg, table['b']*u.deg, frame='galactic') P = pvextractor.Path(coords, width=300*u.arcsec) dl = (table['l'][1:]-table['l'][:-1]) db = (table['b'][1:]-table['b'][:-1]) dist = (dl**2+db**2)**0.5 cdist = np.zeros(dist.size+1) cdist[1:] = dist.cumsum() reftime = -2 bricktime = 0.3 time = table['t']
import matplotlib from paths import hpath, apath, fpath, pcpath matplotlib.rc_file(pcpath("pubfiguresrc")) import numpy as np import pylab as pl from astropy.table import Table, Column from astropy import log from astropy import units as u from scipy.interpolate import PiecewisePolynomial from h2co_modeling.temperature_mapper import ph2cogrid, TemperatureMapper from dendrograms import catalog, catalog_sm, dend, dendsm import heating import gaussian_correction import lte_model if "tm" not in locals(): tm = TemperatureMapper(logdensities=[3, 4, 5], abundances=(1.2e-9,)) tm2 = TemperatureMapper(logdensities=[4], deltav=20.0) tm3 = TemperatureMapper(logdensities=[4], deltav=1.0) tm4 = TemperatureMapper(logdensities=[4], abundances=(1e-8, 1e-10)) segmentdata = { "alpha": [(0.0, 1.0, 1.0), (0.5, 1.0, 1.0), (1.0, 1.0, 1.0)], "blue": [(0.0, 1.0, 1.0), (0.5, 0.0, 0.0), (1.0, 0.0, 0.0)], "green": [(0.0, 0.0, 0.0), (0.5, 0.75, 0.75), (1.0, 0.0, 0.0)], "red": [(0.0, 0.0, 0.0), (0.5, 0.0, 0.0), (1.0, 1.0, 1.0)],