Exemple #1
0
 def __init__(self):
     self.args = parge_config()
     self.cfg = Config.fromfile(self.args.cfg_file)
     self.class_num = len(self.cfg.data.class_names) + 1
     self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
     self.output_dir = os.path.join('work_dirs', self.args.extra_tag)
     self.segmenter = build_segmenter(self.cfg.model)
     self.segmenter.to(self.device)
     state_dict = torch.load(self.args.ckpt_path)['model_state']
     self.segmenter.load_state_dict(state_dict)
     self.inference_dataset = build_dataset(self.cfg.data.inference)
     self.inference_data_loader = build_dataloader(self.inference_dataset,
                                                   self.args.batch_size,
                                                   self.args.workers)
Exemple #2
0
def test_nnunet():
    encoder = dict(type='UnetEncoder',
                   backbone=dict(type='ResNet',
                                 name='resnet18',
                                 weights='imagenet'))

    decoder = dict(type='UnetDecoder',
                   decoder_channels=(512, 256, 128, 64, 64),
                   final_channels=2)

    cfg = dict(type='NNUNet',
               encoder=encoder,
               decoder=decoder,
               activation='softmax')

    nnunet = build_segmenter(cfg)
    assert isinstance(nnunet.encoder, UnetEncoder)
    assert isinstance(nnunet.decoder, UnetDecoder)
Exemple #3
0
def test_deeplabv3plus():
    deeplabv3plus_cfg = dict(type='DeeplabV3Plus',
                             encoder=dict(type='DeeplabV3PlusEncoder',
                                          backbone=dict(type='ResNet',
                                                        name='resnet18',
                                                        weights='imagenet'),
                                          encoder_output_stride=16),
                             decoder=dict(type='DeeplabV3PlusDecoder',
                                          encoder_channels=(256, 64),
                                          decoder_channels=[256, 48],
                                          output_stride=16,
                                          final_channels=2))

    deeplabv3plus = build_segmenter(deeplabv3plus_cfg)
    assert isinstance(deeplabv3plus.encoder, DeeplabV3PlusEncoder)
    assert isinstance(deeplabv3plus.decoder, DeeplabV3PlusDecoder)

    input_features = torch.rand(2, 3, 256, 256)
    out_features = deeplabv3plus(input_features)
    assert out_features.shape == (2, 2, 256, 256)
Exemple #4
0
def test_unet():
    encoder = dict(type='UnetEncoder',
                   backbone=dict(type='ResNet',
                                 name='resnet18',
                                 weights='imagenet'))

    decoder = dict(type='UnetDecoder',
                   decoder_channels=(512, 256, 128, 64, 64),
                   final_channels=2)

    cfg = dict(type='UNet',
               encoder=encoder,
               decoder=decoder,
               activation='softmax')

    unet = build_segmenter(cfg)

    assert isinstance(unet.encoder, UnetEncoder)
    assert isinstance(unet.decoder, UnetDecoder)

    input_features = torch.rand(2, 3, 256, 256)
    out_features = unet(input_features)
    assert out_features[0].shape == (2, 2, 256, 256)