Exemple #1
0
def snapshot_kl_divs(run):
    import pandas as pd
    from pavlov import runs, storage
    from boardlaw import hex
    from boardlaw.main import mix
    import torch
    from tqdm.auto import tqdm

    m = storage.load_raw(run, 'model')
    worlds = mix(hex.Hex.initial(n_envs=16*1024, boardsize=runs.info(run)['params']['boardsize']))

    logits = {}
    for idx in tqdm(storage.snapshots(run)):
        sd = storage.load_snapshot(run, idx)['agent']
        m.load_state_dict(storage.expand(sd)['network'])
        logits[idx] = m(worlds).logits.detach()
        
    kldivs = {}
    for i in logits:
        for j in logits:
            li = logits[i]
            lj = logits[j]
            terms = -li.exp().mul(lj - li)
            mask = torch.isfinite(terms)
            kldiv = terms.where(mask, torch.zeros_like(terms)).sum(-1)
            kldivs[i, j] = kldiv.mean().item()
    df = pd.Series(kldivs).unstack()

    return df
Exemple #2
0
def ablate_run_snapshots(run):
    for i, info in tqdm(storage.snapshots(run).items()):
        if (i == 0) or (np.log2(i) % 1 == 0):
            pass
        else:
            print('Removing', run, info['path'].name)
            files.remove(run, info['path'].name)
Exemple #3
0
def snapshot_data(new_runs):
    snapshots = {}
    for _, r in tqdm(list(new_runs.iterrows()), desc='snapshots'):
        for i, s in storage.snapshots(r.run).items():
            stored = storage.load_snapshot(r.run, i)
            if 'n_samples' in stored:
                snapshots[r.run, i] = {
                    'samples': stored['n_samples'],
                    'flops': stored['n_flops']
                }
    snapshots = (pd.DataFrame.from_dict(
        snapshots,
        orient='index').rename_axis(index=('run', 'idx')).reset_index())
    # snapshots['id'] = snapshots.index.to_series()
    return snapshots
Exemple #4
0
def load(run):
    snapshots = pd.DataFrame.from_dict(storage.snapshots(run), orient='index')
    info, losses = {}, {}
    for i, row in snapshots.iterrows():
        losses[row.boardsize, row.depth,
               row.width] = storage.load_snapshot(run, i)['losses']
        info[row.boardsize, row.depth, row.width] = {
            'macs': row.n_macs,
            'params': row.n_params
        }
    losses = pd.DataFrame(losses)
    losses.index.name = 'step'
    losses.columns.names = ('boardsize', 'depth', 'width')

    info = pd.DataFrame(info)
    info.columns.names = ('boardsize', 'depth', 'width')
    return losses, info
Exemple #5
0
def test_evaluator():
    from pavlov import runs, storage
    from boardlaw.arena import common

    n_envs_per = 512
    df = runs.pandas(description='cat/nodes')

    names = []
    for r in df.index:
        snaps = storage.snapshots(r)
        for i in snaps:
            names.append((r, i))
    names = names[:12]

    games = pd.DataFrame(0, names, names)

    from IPython import display

    start = time.time()
    results = []
    moves, matches = 0, 0
    for rs, stats in evaluate(worldfunc,
                              agentfunc,
                              games,
                              chunksize=4,
                              n_envs_per=n_envs_per):
        results.extend(rs)
        moves += sum(r.moves for r in rs)
        matches += len(rs)

        duration = time.time() - start
        display.clear_output(wait=True)
        print(
            f'{moves/duration:.0f} moves/s, {60*matches/duration:.0f} matches/min'
        )

    from collections import defaultdict
    counts = defaultdict(lambda: 0)
    for r in results:
        counts[r.names] += r.games

    assert len(counts) == len(names) * (len(names) - 1)
    assert set(counts.values()) == {n_envs_per}
Exemple #6
0
def snapshot_agents(run, agentfunc, **kwargs):
    if not isinstance(run, (int, str)):
        agents = {}
        for r in run:
            agents.update(snapshot_agents(r, agentfunc, **kwargs))
        return agents

    period = kwargs.get('period', 1)
    tail = kwargs.get('tail', int(1e6))
    try:
        stored = pd.DataFrame.from_dict(
            storage.snapshots(run), orient='index').tail(tail).iloc[::period]
    except ValueError:
        return {}
    else:
        agents = {}
        for idx, info in stored.iterrows():
            if idx % period == 0:
                name = pd.Timestamp(
                    info['_created']).strftime(r'%y%m%d-%H%M%S-snapshot')
                agents[name] = common.agent(run, idx, device='cuda')
        return agents
Exemple #7
0
def test_chunk_evaluator():
    from pavlov import runs, storage
    from boardlaw.arena import common

    df = runs.pandas(description='cat/nodes')
    agents = {}
    for r in df.index:
        snaps = storage.snapshots(r)
        for i in snaps:
            agents[f'{r}.{i}'] = common.agent(r, i, 'cuda')
    agents = {k: agents[k] for k in list(agents)[:100]}

    worldfunc = lambda n_envs: common.worlds(
        df.index[0], n_envs, device='cuda')
    evaluator = ChunkEvaluator(worldfunc, agents, 512)

    from IPython import display

    results = []
    while not evaluator.finished():
        results.extend(evaluator.step())

        display.clear_output(wait=True)
        evaluator.report()
Exemple #8
0
def adam_over_time(run, B):
    import matplotlib.pyplot as plt
    from tqdm.auto import tqdm
    sizes = arrdict.stack(
        [adam_way(run, idx, B) for idx in tqdm(storage.snapshots(run))])
    plt.plot(sizes)