def viz_obb(pc,
            label,
            mask,
            angle_classes,
            angle_residuals,
            size_classes,
            size_residuals,
            name=''):
    """ Visualize oriented bounding box ground truth
    pc: (N,3)
    label: (K,3)  K == MAX_NUM_OBJ
    mask: (K,)
    angle_classes: (K,)
    angle_residuals: (K,)
    size_classes: (K,)
    size_residuals: (K,3)
    """
    oriented_boxes = []
    K = label.shape[0]
    for i in range(K):
        if mask[i] == 0: continue
        obb = np.zeros(7)
        obb[0:3] = label[i, 0:3]
        heading_angle = 0  # hard code to 0
        box_size = DC.mean_size_arr[size_classes[i], :] + size_residuals[i, :]
        obb[3:6] = box_size
        obb[6] = -1 * heading_angle
        print(obb)
        oriented_boxes.append(obb)
    pc_util.write_oriented_bbox(oriented_boxes, 'gt_obbs{}.ply'.format(name))
    pc_util.write_ply(label[mask == 1, :], 'gt_centroids{}.ply'.format(name))
def viz_obb(pc, label, mask, angle_classes, angle_residuals, size_classes,
            size_residuals):
    """ Visualize oriented bounding box ground truth
    pc: (N,3)
    label: (K,3)  K == MAX_NUM_OBJ
    mask: (K,)
    angle_classes: (K,)
    angle_residuals: (K,)
    size_classes: (K,)
    size_residuals: (K,3)
    """
    oriented_boxes = []
    K = label.shape[0]
    for i in range(K):
        if mask[i] == 0: continue
        obb = np.zeros(7)
        obb[0:3] = label[i, 0:3]
        heading_angle = DC.class2angle(angle_classes[i], angle_residuals[i])
        box_size = DC.class2size(size_classes[i], size_residuals[i])
        obb[3:6] = box_size
        obb[6] = -1 * heading_angle
        print(obb)
        oriented_boxes.append(obb)
    pc_util.write_oriented_bbox(oriented_boxes, 'gt_obbs.ply')
    pc_util.write_ply(label[mask == 1, :], 'gt_centroids.ply')
def viz_votes(pc, point_votes, point_votes_mask, name=''):
    """ Visualize point votes and point votes mask labels
    pc: (N,3 or 6), point_votes: (N,9), point_votes_mask: (N,)
    """
    inds = (point_votes_mask == 1)
    pc_obj = pc[inds, 0:3]
    pc_obj_voted1 = pc_obj + point_votes[inds, 0:3]
    pc_util.write_ply(pc_obj, 'pc_obj{}.ply'.format(name))
    pc_util.write_ply(pc_obj_voted1, 'pc_obj_voted1{}.ply'.format(name))
Exemple #4
0
def virtual_scane_one_model(model_dir, worker_id):
    print('Scanning ' + model_dir)

    ######### prepare some folder for tmp work #############
    tmp_model_name = 'tmp' + str(worker_id) + '.ply'
    TMP_DATA_PATH = './tmp' + str(worker_id)
    TMP_PLY_POINTCLOUD_PATH = './tmp' + str(worker_id) + '.ply_output'
    if not os.path.exists(TMP_DATA_PATH):
        os.makedirs(TMP_DATA_PATH)
    clean_dir(TMP_PLY_POINTCLOUD_PATH)

    # generate camera parameters
    cam_view_points, cam_target_points = generate_camera_view_target_points()

    model_filename = os.path.join(model_dir, 'models/model_normalized.obj')
    if not os.path.exists(model_filename):
        print('File not found: %s' % (model_filename))
        return
    model_basename = os.path.basename(model_dir)
    prev_clean_output_filename = os.path.join(PREV_OUTPUT_DATA_PATH,
                                              model_basename + '_clean.ply')
    if os.path.exists(prev_clean_output_filename):
        print('Previously scanned, skip.', prev_clean_output_filename)
        return

    ply_tmp_name = os.path.join(TMP_DATA_PATH, tmp_model_name)
    mesh_util.convert_obj2ply(model_filename,
                              ply_tmp_name,
                              recenter=True,
                              center_mode='box_center')

    cmd_str = EXE_VIRTUAL_SCANNER + ' ' + ply_tmp_name + ' ' + CMD_POSTFIX.format(
        ','.join(str(e) for e in cam_view_points), ','.join(
            str(e) for e in cam_target_points))
    os.system(cmd_str)

    # collect all scanned point clouds
    all_xyz = []
    pcd_files = glob.glob(TMP_PLY_POINTCLOUD_PATH + '/*.pcd')
    for pf in pcd_files:
        xyz = pc_util.read_pcd(pf)
        all_xyz.extend(xyz)
    all_points = np.array(all_xyz)
    print('Collecte #points:', all_points.shape)
    if all_points.shape[0] < 2048:
        print('Failed to scan sufficient points! Move to next model.')
        return
    all_points = pc_util.remove_duplicated_points(all_points)
    print('Total points after merge: %d' % (all_points.shape[0]))
    clean_output_filename = os.path.join(OUTPUT_DATA_PATH,
                                         model_basename + '_clean.ply')
    pc_util.write_ply(all_points, clean_output_filename)
    print('Save point cloud to ' + clean_output_filename)

    return
Exemple #5
0
def data_viz(data_dir, dump_dir=os.path.join(BASE_DIR, 'data_viz_dump')):
    ''' Examine and visualize ycbgrasp dataset. '''
    ycb = ycb_object(data_dir)
    idxs = np.array(range(0, len(ycb)))

    if not os.path.exists(dump_dir):
        os.mkdir(dump_dir)

    for idx in range(len(ycb)):
        if idx % 10:
            continue
        data_idx = idxs[idx]
        print('data index: ', data_idx)
        pc = ycb.get_pointcloud(data_idx)
        pc = pc[:, 0:3]
        pc = pc_util.random_sampling(pc, args.num_point)
        pc_util.write_ply(pc, os.path.join(dump_dir, str(idx) + '_pc.ply'))

    print('Complete!')
Exemple #6
0
    def crop_patch(self, save_root_path, use_dijkstra=True, scale_ratio=1, gpu_id=0):
        if save_root_path[-1]=='/':
            save_root_path = save_root_path[:-1]
        if not os.path.exists(save_root_path):
            os.makedirs(save_root_path)

        print('Creating TF session...')
        config = tf.ConfigProto()
        config.gpu_options.visible_device_list=str(gpu_id)
        config.gpu_options.allow_growth = True
        config.allow_soft_placement = True
        self.sess = tf.Session(config=config)
        
        seeds = self.get_idx(self.patch_num)
        print(seeds)

        self.sess.close()

        i = -1
        for seed in (seeds):
            i = i+1
            # patch_size = self.patch_size*np.random.randint(1,scale_ratio+1)
            assert scale_ratio>=1.0
            patch_size = int(self.patch_size*np.random.uniform(1.0, scale_ratio))
            try:
                if use_dijkstra:
                    idx = self.geodesic_knn(seed, patch_size)
                else:
                    idx = self.bfs_knn(seed, patch_size)
            except Exception as e:
                    exc_type, exc_obj, exc_tb = sys.exc_info()
                    fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1]
                    print(exc_type, fname, exc_tb.tb_lineno)
            idxx = np.random.permutation(patch_size)[:self.patch_size]
            idxx.sort()
            idx = idx[idxx]
            point = self.data[idx]

            #print("patch:%d  point:%d" % (i, patch_size))

            output_filename = '%s/%s_%d.ply' % (save_root_path, self.name, i)
            pc_util.write_ply(point, output_filename)
def viz_votes(pc, point_votes, point_votes_mask):
    """ Visualize point votes and point votes mask labels
    pc: (N,3 or 6), point_votes: (N,9), point_votes_mask: (N,)
    """
    inds = (point_votes_mask == 1)
    pc_obj = pc[inds, 0:3]
    pc_obj_voted1 = pc_obj + point_votes[inds, 0:3]
    pc_obj_voted2 = pc_obj + point_votes[inds, 3:6]
    pc_obj_voted3 = pc_obj + point_votes[inds, 6:9]
    pc_util.write_ply(pc_obj, 'pc_obj.ply')
    pc_util.write_ply(pc_obj_voted1, 'pc_obj_voted1.ply')
    pc_util.write_ply(pc_obj_voted2, 'pc_obj_voted2.ply')
    pc_util.write_ply(pc_obj_voted3, 'pc_obj_voted3.ply')
def data_viz(data_dir, dump_dir=os.path.join(BASE_DIR, 'data_viz_dump')):
    ''' Examine and visualize ycbgrasp dataset. '''
    ycb = ycb_object(data_dir)
    idxs = np.array(range(0, len(ycb)))
    #np.random.seed(0)
    #np.random.shuffle(idxs)

    if not os.path.exists(dump_dir):
        os.mkdir(dump_dir)

    for idx in range(len(ycb)):
        if idx % 500:
            continue
        data_idx = idxs[idx]
        print('data index: ', data_idx)
        pc = ycb.get_pointcloud(data_idx)
        objects = ycb.get_label_objects(data_idx)
        oriented_boxes = []
        for obj in objects:
            object_pc, inds = ycbgrasp_utils.get_object_points(
                pc, obj.classname)
            pc_util.write_ply(
                object_pc,
                os.path.join(dump_dir,
                             str(idx) + '_' + obj.classname + '_pc.ply'))
            if len(object_pc) > 300:
                obb = np.zeros((7))
                obb[0:3] = obj.centroid
                obb[3:6] = np.array([obj.l, obj.w, obj.h]) * 2
                obb[6] = obj.heading_angle
                oriented_boxes.append(obb)
        if len(oriented_boxes) > 0:
            oriented_boxes = np.vstack(tuple(oriented_boxes))
            pc_util.write_oriented_bbox(
                oriented_boxes, os.path.join(dump_dir,
                                             str(idx) + '_obbs.ply'))
            pc = pc[:, 0:3]
            pc_util.write_ply(pc, os.path.join(dump_dir, str(idx) + '_pc.ply'))

    print('Complete!')
        obb = np.zeros(7)
        obb[0:3] = label[i, 0:3]
        heading_angle = 0  # hard code to 0
        box_size = DC.mean_size_arr[size_classes[i], :] + size_residuals[i, :]
        obb[3:6] = box_size
        obb[6] = -1 * heading_angle
        print(obb)
        oriented_boxes.append(obb)
    pc_util.write_oriented_bbox(oriented_boxes, 'gt_obbs{}.ply'.format(name))
    pc_util.write_ply(label[mask == 1, :], 'gt_centroids{}.ply'.format(name))


if __name__ == '__main__':
    dset = ScannetDetectionDataset(use_height=True, num_points=40000)
    for i_example in range(4):
        example = dset.__getitem__(1)
        pc_util.write_ply(example['point_clouds'],
                          'pc_{}.ply'.format(i_example))
        viz_votes(example['point_clouds'],
                  example['vote_label'],
                  example['vote_label_mask'],
                  name=i_example)
        viz_obb(pc=example['point_clouds'],
                label=example['center_label'],
                mask=example['box_label_mask'],
                angle_classes=None,
                angle_residuals=None,
                size_classes=example['size_class_label'],
                size_residuals=example['size_residual_label'],
                name=i_example)
Exemple #10
0
def data_viz(data_dir, dump_dir=os.path.join(BASE_DIR, 'data_viz_dump')):
    ''' Examine and visualize SUN RGB-D data. '''
    sunrgbd = sunrgbd_object(data_dir)
    idxs = np.array(range(1, len(sunrgbd) + 1))
    np.random.seed(0)
    np.random.shuffle(idxs)
    for idx in range(len(sunrgbd)):
        data_idx = idxs[idx]
        print('-' * 10, 'data index: ', data_idx)
        pc = sunrgbd.get_depth(data_idx)
        print('Point cloud shape:', pc.shape)

        # Project points to image
        calib = sunrgbd.get_calibration(data_idx)
        uv, d = calib.project_upright_depth_to_image(pc[:, 0:3])
        print('Point UV:', uv)
        print('Point depth:', d)

        import matplotlib.pyplot as plt
        cmap = plt.cm.get_cmap('hsv', 256)
        cmap = np.array([cmap(i) for i in range(256)])[:, :3] * 255

        img = sunrgbd.get_image(data_idx)
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        for i in range(uv.shape[0]):
            depth = d[i]
            color = cmap[int(120.0 / depth), :]
            cv2.circle(img, (int(np.round(uv[i, 0])), int(np.round(uv[i, 1]))),
                       2,
                       color=tuple(color),
                       thickness=-1)
        if not os.path.exists(dump_dir):
            os.mkdir(dump_dir)
        Image.fromarray(img).save(os.path.join(dump_dir, 'img_depth.jpg'))

        # Load box labels
        objects = sunrgbd.get_label_objects(data_idx)
        print('Objects:', objects)

        # Draw 2D boxes on image
        img = sunrgbd.get_image(data_idx)
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        for i, obj in enumerate(objects):
            cv2.rectangle(img, (int(obj.xmin), int(obj.ymin)),
                          (int(obj.xmax), int(obj.ymax)), (0, 255, 0), 2)
            cv2.putText(img, '%d %s' % (i, obj.classname),
                        (max(int(obj.xmin), 15), max(int(obj.ymin), 15)),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255, 0, 0), 2)
        Image.fromarray(img).save(os.path.join(dump_dir, 'img_box2d.jpg'))

        # Dump OBJ files for the colored point cloud
        for num_point in [10000, 20000, 40000, 80000]:
            sampled_pcrgb = pc_util.random_sampling(pc, num_point)
            pc_util.write_ply_rgb(
                sampled_pcrgb[:, 0:3],
                (sampled_pcrgb[:, 3:] * 256).astype(np.int8),
                os.path.join(dump_dir, 'pcrgb_%dk.obj' % (num_point // 1000)))
        # Dump OBJ files for 3D bounding boxes
        # l,w,h correspond to dx,dy,dz
        # heading angle is from +X rotating towards -Y
        # (+X is degree, -Y is 90 degrees)
        oriented_boxes = []
        for obj in objects:
            obb = np.zeros((7))
            obb[0:3] = obj.centroid
            # Some conversion to map with default setting of w,l,h
            # and angle in box dumping
            obb[3:6] = np.array([obj.l, obj.w, obj.h]) * 2
            obb[6] = -1 * obj.heading_angle
            print('Object cls, heading, l, w, h:',\
                 obj.classname, obj.heading_angle, obj.l, obj.w, obj.h)
            oriented_boxes.append(obb)
        if len(oriented_boxes) > 0:
            oriented_boxes = np.vstack(tuple(oriented_boxes))
            pc_util.write_oriented_bbox(oriented_boxes,
                                        os.path.join(dump_dir, 'obbs.ply'))
        else:
            print('-' * 30)
            continue

        # Draw 3D boxes on depth points
        box3d = []
        ori3d = []
        for obj in objects:
            corners_3d_image, corners_3d = sunrgbd_utils.compute_box_3d(
                obj, calib)
            ori_3d_image, ori_3d = sunrgbd_utils.compute_orientation_3d(
                obj, calib)
            print('Corners 3D: ', corners_3d)
            box3d.append(corners_3d)
            ori3d.append(ori_3d)
        pc_box3d = np.concatenate(box3d, 0)
        pc_ori3d = np.concatenate(ori3d, 0)
        print(pc_box3d.shape)
        print(pc_ori3d.shape)
        pc_util.write_ply(pc_box3d, os.path.join(dump_dir,
                                                 'box3d_corners.ply'))
        pc_util.write_ply(pc_ori3d, os.path.join(dump_dir, 'box3d_ori.ply'))
        print('-' * 30)
        print('Point clouds and bounding boxes saved to PLY files under %s' %
              (dump_dir))
        print('Type anything to continue to the next sample...')
        input()
Exemple #11
0
def scannet_projection():
    mask = torch.cuda.LongTensor(1 * column_height)
    depth_images = torch.cuda.FloatTensor(1, proj_image_dims[1], proj_image_dims[0])
    color_images = torch.cuda.FloatTensor(1, 3, input_image_dims[1], input_image_dims[0])
    camera_poses = torch.cuda.FloatTensor(1, 4, 4)
    label_images = torch.cuda.LongTensor(1, proj_image_dims[1], proj_image_dims[0])

    # load_images
    data_path = os.path.join(BASE_DIR, 'test_data')
    load_frames_multi(data_path, np.array([20]), depth_images, color_images, camera_poses, color_mean, color_std)

    # Load alignments
    lines = open(BASE_DIR + '/scannet/scans/scene0001_00/scene0001_00.txt').readlines()
    for line in lines:
        if 'axisAlignment' in line:
            axis_align_matrix = [float(x) \
                                 for x in line.rstrip().strip('axisAlignment = ').split(' ')]
            break
    axis_align_matrix = np.array(axis_align_matrix).reshape((4, 4))

    # TODO: for test purpose, we only need one loop now
    for d, c in zip(depth_images, camera_poses):
        # boundingmin, boundingmax, world_to_camera = projection.compute_projection(d, c, axis_align_matrix)
        boundingmin, boundingmax, world_to_camera = projection.compute_projection(d, c)
        boundingmin = boundingmin.cpu().numpy()
        boundingmax = boundingmax.cpu().numpy()
        break
    mesh_vertices = read_mesh_vertices(filename=BASE_DIR + '/scannet/scans/scene0001_00/scene0001_00_vh_clean_2.ply')
    # add addition ones to the end or each position in mesh_vertices
    mesh_vertices = np.append(mesh_vertices, np.ones((mesh_vertices.shape[0], 1)), axis=1)

    # TODO: this filter is problematic
    # filter out the vertices that are not in the frustum (here treated as box-shape)
    filter1 = mesh_vertices[:, 0]
    filter1 = (filter1 >= boundingmin[0]) & (filter1 <= boundingmax[0])
    filter2 = mesh_vertices[:, 1]
    filter2 = (filter2 >= boundingmin[1]) & (filter2 <= boundingmax[1])
    filter3 = mesh_vertices[:, 2]
    filter3 = (filter3 >= boundingmin[2]) & (filter3 <= boundingmax[2])
    filter_all = filter1 & filter2 & filter3
    valid_vertices = mesh_vertices[filter_all]

    # transform to current frame
    world_to_camera = world_to_camera.cpu().numpy()
    N = valid_vertices.shape[0]
    valid_vertices_T = np.transpose(valid_vertices)
    pcamera = np.matmul(world_to_camera, valid_vertices_T)  # (4,4) x (4,N) => (4,N)

    # Alternative way to compute p
    # intrinsic_np = intrinsic.cpu().numpy()
    # pimage = np.matmul(intrinsic_np, pcamera)  # (4,4) x (4,N) => (4,N)
    # ppixel = 1 / pimage[2] * np.array(pimage[0:2, :])  # shape: (2,N)
    # p = np.concatenate((ppixel, pimage[2:, :]), axis=0)
    # p = np.transpose(p)

    p = np.transpose(pcamera)  # shape: (N,4)

    # project into image
    p[:, 0] = (p[:, 0] * projection.intrinsic[0][0].cpu().numpy()) / p[:, 2] + projection.intrinsic[0][2].cpu().numpy()
    p[:, 1] = (p[:, 1] * projection.intrinsic[1][1].cpu().numpy()) / p[:, 2] + projection.intrinsic[1][2].cpu().numpy()
    pi = np.rint(p)

    x = pi[:, 0]
    x_filter = (x >= 0) & (x < proj_image_dims[0])
    y = pi[:, 1]
    y_filter = (y >= 0) & (y < proj_image_dims[1])
    filterxy = x_filter & y_filter

    pi = pi[filterxy]
    p = p[filterxy]

    reconstructed_depth_map = np.zeros((proj_image_dims[1], proj_image_dims[0]))

    # for i1 in range(320):
    #     for i2 in range(240):
    #         x = pi[:, 0]
    #         x_filter = x == i1
    #         y = pi[:, 1]
    #         y_filter = y == i2
    #
    #         correct_depth = depth_map_to_compare[i2][i1]
    #
    #         dpth = p[:, 2]
    #         dpth_filter = (dpth <= correct_depth+0.5) & (dpth >= correct_depth-0.5)
    #
    #         filterxyd = x_filter & y_filter & dpth_filter
    #         p_temp = p[filterxyd]
    #         if p_temp.shape[0] == 0:
    #             reconstructed_depth_map[i2][i1] = 0.0
    #         else:
    #             reconstructed_depth_map[i2][i1] = p_temp[0,2]
    #         print(i1,i2)
    #

    p_combined = np.concatenate((pi[:, 0:2], p[:, 2:3]), axis=1)
    # find correspondence in a 320 x 240 image, and fill in the depth value:
    # reconstructed_depth_map = np.zeros((500, 500))
    # TODO: compare with depth map
    for p in p_combined:
        reconstructed_depth_map[int(p[1]), int(p[0])] = p[2]

    num_non_zeros = np.count_nonzero(reconstructed_depth_map)
    imageio.imwrite(BASE_DIR + '/reconstructed_depth_map.png', reconstructed_depth_map)


    # output point cloud from depth_image
    depth_map_to_compare = depth_images[0].cpu().numpy()
    pointstowrite = np.ones((320 * 240, 4))
    colors = np.ones((320 * 240, 4))

    # TODO: convert this to matrix multiplication
    print("back-projection, depth-map -> 3d points")
    for i1 in tqdm(range(proj_image_dims[0])):
        for i2 in range(proj_image_dims[1]):
            pcamera = projection.depth_to_skeleton(i1, i2, depth_map_to_compare[i2, i1]).unsqueeze(1).cpu().numpy()
            pcamera = np.append(pcamera, np.ones((1, 1)), axis=0)
            camera2world = camera_poses[0].cpu().numpy()
            world = np.matmul(camera2world, pcamera)
            world = world.reshape((1, 4))
            pointstowrite[i1 * i2, :] = world[0, :]
    pointstowrite = pointstowrite[:, 0:3]


    pc_util.write_ply(pointstowrite, BASE_DIR + '/scannet/testobject.ply')
Exemple #12
0
    para_config_gan['3D-EPN_train_point_cloud_dir'] = '/workspace/pointnet2/pc2pc/data/3D-EPN_dataset/shapenet_dim32_sdf_pc/02958343/point_cloud'
    para_config_gan['3D-EPN_test_point_cloud_dir'] = '/workspace/pointnet2/pc2pc/data/3D-EPN_dataset/test-images_dim32_sdf_pc/02958343/point_cloud'

    NOISY_TRAIN_DATASET = ShapeNet_3DEPN_PointsDataset(para_config_gan['3D-EPN_train_point_cloud_dir'], batch_size=12, npoint=2048, shuffle=True, split='trainval', preprocess=False)
    '''

    REALDATASET = RealWorldPointsDataset(
        '/workspace/pointnet2/pc2pc/data/scannet_v2_chairs_alilgned_v2/point_cloud',
        batch_size=6,
        npoint=2048,
        shuffle=False,
        split='trainval',
        random_seed=0)

    data_batch = REALDATASET.next_batch()
    pc_util.write_ply(data_batch[0], 'real_data.ply')
    pc_util.write_ply(data_batch[1], 'real_data_1.ply')
    pc_util.write_ply(data_batch[2], 'real_data_2.ply')
    '''
    TRAIN_DATASET = ShapeNetPartPointsDataset('/workspace/pointnet2/pc2pc/data/ShapeNet_v2_point_cloud/03001627/point_cloud_clean', batch_size=6, npoint=2048,  shuffle=False, split='test', random_seed=0)

    data_batch = TRAIN_DATASET.next_batch_noise_partial_by_percentage()
    pc_util.write_ply(data_batch[0], 'data.ply')
    '''

    #data_batch = TRAIN_DATASET.aug_data_batch(data_batch, rot=False, trans=0.1, snap2ground=False)
    #pc_util.write_ply(data_batch[0], 'data_aug.ply')
    '''
    noisy_partial_data_batch = TRAIN_DATASET.next_batch_noise_added_with_partial(partial_portion=1)
    pc_util.write_ply(noisy_partial_data_batch[0], 'test_noisy_partial.ply')
Exemple #13
0
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
ROOT_DIR = os.path.dirname(BASE_DIR)
sys.path.append(os.path.join(ROOT_DIR, '../utils'))
import pc_util

dataset_dir = '/workspace/pointnet2/pc2pc/data/3D-EPN_dataset/test-images_dim32_sdf_pc'
output_dir = '/workspace/pointnet2/pc2pc/data/3D-EPN_dataset/test-images_dim32_sdf_pc_processed'
if not os.path.exists(output_dir):
    os.makedirs(output_dir)

cls_ids = os.listdir(dataset_dir)

for cls_id in cls_ids:

    cls_dir = os.path.join(dataset_dir, cls_id)
    output_cls_dir = os.path.join(output_dir, cls_id, 'point_cloud')
    if not os.path.exists(output_cls_dir):
        os.makedirs(output_cls_dir)

    point_cloud_names = os.listdir(cls_dir)
    for pc_n in tqdm(point_cloud_names):

        pc_filename = os.path.join(cls_dir, pc_n)
        out_pc_filename = os.path.join(output_cls_dir, pc_n)

        points = pc_util.read_ply_xyz(pc_filename)
        rotated_points = pc_util.rotate_point_cloud_by_axis_angle(
            points, [0, 1, 0], 90)

        pc_util.write_ply(rotated_points, out_pc_filename)
Exemple #14
0
        ret_dict['point_boundary_mask_z'] = point_boundary_mask_z.astype(np.float32)
        ret_dict['point_boundary_mask_xy'] = point_boundary_mask_xy.astype(np.float32)
        ret_dict['point_boundary_offset_z'] = point_boundary_offset_z.astype(np.float32)
        ret_dict['point_boundary_offset_xy'] = point_boundary_offset_xy.astype(np.float32)
        ret_dict['point_boundary_sem_z'] = point_boundary_sem_z.astype(np.float32)
        ret_dict['point_boundary_sem_xy'] = point_boundary_sem_xy.astype(np.float32)

        ret_dict['point_line_mask'] = point_line_mask.astype(np.float32)
        ret_dict['point_line_offset'] = point_line_offset.astype(np.float32)
        ret_dict['point_line_sem'] = point_line_sem.astype(np.float32)
        
        ret_dict['vote_label'] = point_votes.astype(np.float32)
        ret_dict['vote_label_mask'] = point_votes_mask.astype(np.int64)
        
        ret_dict['scan_idx'] = np.array(idx).astype(np.int64)
        ret_dict['pcl_color'] = pcl_color
        ret_dict['num_instance'] = num_instance
        
        return ret_dict
        
if __name__=='__main__':
    dset = ScannetDetectionDataset(split_set='train', use_height=True, num_points=50000, augment=False, use_angle=False)
    for i_example in range(len(dset.scan_names)):
        example = dset.__getitem__(i_example)
        pc_util.write_ply(example['point_clouds'], 'pc_{}.ply'.format(i_example))
        pc_util.write_ply(example['point_clouds'][example['point_line_mask']==1,0:3], 'pc_obj_line{}.ply'.format(i_example))
        pc_util.write_ply(example['point_clouds'][example['point_boundary_mask_z']==1,0:3], 'pc_obj_boundary_z{}.ply'.format(i_example))
        pc_util.write_ply(example['point_clouds'][example['point_boundary_mask_xy']==1,0:3], 'pc_obj_boundary_xy{}.ply'.format(i_example))
        print (i_example)
Exemple #15
0
def dump_results(end_points, dump_dir, config, inference_switch=False):

    if not os.path.exists(dump_dir):
        os.system('mkdir %s' % (dump_dir))

    # INPUT
    point_clouds = end_points['point_clouds'].cpu().numpy()
    batch_size = point_clouds.shape[0]

    # NETWORK OUTPUTS
    seed_xyz = end_points['seed_xyz'].detach().cpu().numpy()  # (B,num_seed,3)
    if 'vote_object_xyz' in end_points:
        aggregated_vote_object_xyz = end_points[
            'aggregated_vote_object_xyz'].detach().cpu().numpy()
        vote_object_xyz = end_points['vote_object_xyz'].detach().cpu().numpy(
        )  # (B,num_seed,3)
        aggregated_vote_object_xyz = end_points[
            'aggregated_vote_object_xyz'].detach().cpu().numpy()
    objectness_scores = end_points['objectness_scores'].detach().cpu().numpy(
    )  # (B,K,2)
    pred_center = end_points['center'].detach().cpu().numpy()  # (B,K,3)
    pred_rot = end_points['rot_6d']  # (B,K,3)
    predict_rot = pred_rot.reshape(pred_rot.shape[0] * pred_rot.shape[1],
                                   pred_rot.shape[2])
    predict_rmat = tools.compute_rotation_matrix_from_ortho6d(predict_rot)
    predict_rmat = predict_rmat.reshape(pred_rot.shape[0], pred_rot.shape[1],
                                        9)

    # OTHERS
    #pred_mask = end_points['pred_mask'] # B,num_proposal
    idx_beg = 0

    save_pose_file = os.path.join(dump_dir, 'pred_poses.txt')
    f = open(save_pose_file, "w")

    for i in range(batch_size):
        pc = point_clouds[i, :, :]
        objectness_prob = softmax(objectness_scores[i, :, :])[:, 1]  # (K,)

        # Dump various point clouds
        pc_util.write_ply(
            pc, os.path.join(dump_dir, '%06d_pc.ply' % (idx_beg + i)))
        pc_util.write_ply(
            seed_xyz[i, :, :],
            os.path.join(dump_dir, '%06d_seed_pc.ply' % (idx_beg + i)))
        if 'vote_object_xyz' in end_points:
            pc_util.write_ply(
                end_points['vote_object_xyz'][i, :, :],
                os.path.join(dump_dir, '%06d_vgen_pc.ply' % (idx_beg + i)))
            pc_util.write_ply(
                aggregated_vote_object_xyz[i, :, :],
                os.path.join(dump_dir,
                             '%06d_aggregated_vote_pc.ply' % (idx_beg + i)))
            pc_util.write_ply(
                aggregated_vote_object_xyz[i, :, :],
                os.path.join(dump_dir,
                             '%06d_aggregated_vote_pc.ply' % (idx_beg + i)))
        if np.sum(objectness_prob > DUMP_CONF_THRESH) > 0:
            pc_util.write_ply(
                pred_center[i, objectness_prob > DUMP_CONF_THRESH, 0:3],
                os.path.join(dump_dir,
                             '%06d_confident_proposal_pc.ply' % (idx_beg + i)))

        # Dump predicted poses
        if np.sum(objectness_prob > DUMP_CONF_THRESH) > 0:
            num_proposal = pred_center.shape[1]
            for j in range(num_proposal):
                loc = pred_center[i, j, 0:3]
                for ite in loc:
                    str_num = '{:.6f}'.format(ite)
                    f.write(str_num)
                    f.write(' ')
                f.write("\n")

            for j in range(num_proposal):
                rmat = predict_rmat[i, j, 0:9]
                for ind, ite in enumerate(rmat):
                    str_num = '{:.6f}'.format(ite)
                    f.write(str_num)
                    if (ind + 1) % 3 == 0:
                        f.write('\n')
                    else:
                        f.write(' ')
    f.close()
    df_mesh.apply_translation(trans_v)
    df_mesh.apply_scale(scale_factor)

    # rotate to make the face -z, from +z to -z
    rot_m = axangle2aff([0, 1, 0], np.pi)
    df_mesh.apply_transform(rot_m)

    return df_mesh


volumn_name_list = os.listdir(EPN_test_result_dir)
for vname in volumn_name_list:
    if not vname.endswith('.npy'): continue
    v_filename = os.path.join(EPN_test_result_dir, vname)
    v = np.load(v_filename)
    vertices, triangles = mcubes.marching_cubes(v, isoval)
    # isosuface from distance field
    mesh = trimesh.Trimesh(vertices=vertices, faces=triangles)
    mesh = align_dfmesh_scanpc(mesh, v.shape[0])

    # samples from isosurface
    recon_pc, _ = trimesh.sample.sample_surface(mesh, 2048)
    recon_pc = np.array(recon_pc)

    output_pcloud_re_dir = os.path.join(output_dir, 'pcloud', 'reconstruction')
    if not os.path.exists(output_pcloud_re_dir):
        os.makedirs(output_pcloud_re_dir)
    re_output_filename = os.path.join(output_pcloud_re_dir,
                                      vname.split('.')[0] + '.ply')
    pc_util.write_ply(recon_pc, re_output_filename)
Exemple #17
0
def dump_results(end_points, dump_dir, config, inference_switch=False):

    if not os.path.exists(dump_dir):
        os.system('mkdir %s' % (dump_dir))

    # INPUT
    point_clouds = end_points['point_clouds'].cpu().numpy()
    batch_size = point_clouds.shape[0]

    # NETWORK OUTPUTS
    seed_xyz = end_points['seed_xyz'].detach().cpu().numpy()  # (B,num_seed,3)
    if 'vote_xyz' in end_points:
        aggregated_vote_xyz = end_points['aggregated_vote_xyz'].detach().cpu(
        ).numpy()
        vote_xyz = end_points['vote_xyz'].detach().cpu().numpy(
        )  # (B,num_seed,3)
        aggregated_vote_xyz = end_points['aggregated_vote_xyz'].detach().cpu(
        ).numpy()
    objectness_scores = end_points['objectness_scores'].detach().cpu().numpy(
    )  # (B,K,2)
    pred_center = end_points['center'].detach().cpu().numpy()  # (B,K,3)
    pred_angle_class = torch.argmax(end_points['angle_scores'],
                                    -1)  # B,num_proposal
    pred_angle_residual = torch.gather(
        end_points['angle_residuals'], 2,
        pred_angle_class.unsqueeze(-1))  # B,num_proposal,1
    pred_angle_class = pred_angle_class.detach().cpu().numpy(
    )  # B,num_proposal
    pred_angle_residual = pred_angle_residual.squeeze(
        2).detach().cpu().numpy()  # B,num_proposal
    pred_viewpoint_class = torch.argmax(end_points['viewpoint_scores'],
                                        -1)  # B,num_proposal
    pred_sem_cls = torch.argmax(end_points['sem_cls_scores'],
                                -1)  # B,num_proposal

    pred_quality = end_points['quality'].detach().cpu().numpy(
    )  # B,num_proposal
    pred_width = end_points['width'].detach().cpu().numpy()  # B,num_proposal

    # OTHERS
    #pred_mask = end_points['pred_mask'] # B,num_proposal
    idx_beg = 0

    save_grasp_file = os.path.join(dump_dir, 'pred_grasps.txt')
    f = open(save_grasp_file, "w")
    f.write("object x y z viewpoint angle quality width\n")

    for i in range(batch_size):
        pc = point_clouds[i, :, :]
        objectness_prob = softmax(objectness_scores[i, :, :])[:, 1]  # (K,)

        # Dump various point clouds
        pc_util.write_ply(
            pc, os.path.join(dump_dir, '%06d_pc.ply' % (idx_beg + i)))
        pc_util.write_ply(
            seed_xyz[i, :, :],
            os.path.join(dump_dir, '%06d_seed_pc.ply' % (idx_beg + i)))
        if 'vote_xyz' in end_points:
            pc_util.write_ply(
                end_points['vote_xyz'][i, :, :],
                os.path.join(dump_dir, '%06d_vgen_pc.ply' % (idx_beg + i)))
            pc_util.write_ply(
                aggregated_vote_xyz[i, :, :],
                os.path.join(dump_dir,
                             '%06d_aggregated_vote_pc.ply' % (idx_beg + i)))
            pc_util.write_ply(
                aggregated_vote_xyz[i, :, :],
                os.path.join(dump_dir,
                             '%06d_aggregated_vote_pc.ply' % (idx_beg + i)))
        if np.sum(objectness_prob > DUMP_CONF_THRESH) > 0:
            pc_util.write_ply(
                pred_center[i, objectness_prob > DUMP_CONF_THRESH, 0:3],
                os.path.join(dump_dir,
                             '%06d_confident_proposal_pc.ply' % (idx_beg + i)))

        # Dump predicted grasps
        if np.sum(objectness_prob > DUMP_CONF_THRESH) > 0:
            num_proposal = pred_center.shape[1]
            for j in range(num_proposal):
                grasp = config.param2grasp(pred_sem_cls[i,
                                                        j], pred_center[i, j,
                                                                        0:3],
                                           pred_viewpoint_class[i, j],
                                           pred_angle_class[i, j],
                                           pred_angle_residual[i, j],
                                           pred_quality[i, j,
                                                        0], pred_width[i, j,
                                                                       0])
                f.write(grasp[0])
                f.write(' ')
                for ite in grasp[1:]:
                    str_num = '{:.6f}'.format(ite)
                    f.write(str_num)
                    f.write(' ')
                f.write("\n")

    f.close()

def project_point_clound_to_image(point_cloud, calib_Rtilt, calib_K):
    calib = sunrgbd_utils.SUNRGBD_Calibration_from_array(calib_Rtilt, calib_K)
    uv, d = calib.project_upright_depth_to_image(point_cloud[:, 0:3])
    # pc2 = np.copy(point_cloud)
    # pc2 = np.dot(np.transpose(calib_Rtilt), np.transpose(pc2))
    # pc2 = np.transpose(pc2)
    # pc2[:,[0,1,2]] = pc2[:,[0,2,1]] # cam X,Y,Z = depth X,-Z,Y
    # pc2[:,1] *= -1
    # uv = np.dot(pc2, np.transpose(calib_Rtilt)) # (n,3)
    # uv[:,0] /= uv[:,2]
    # uv[:,1] /= uv[:,2]
    return uv


if __name__ == '__main__':
    d = SunrgbdDetectionVotesDataset(use_height=True,
                                     use_color=True,
                                     use_v1=True,
                                     augment=True)
    sample = d[200]
    print(sample['vote_label'].shape, sample['vote_label_mask'].shape)
    pc_util.write_ply(sample['point_clouds'], 'pc.ply')
    viz_votes(sample['point_clouds'], sample['vote_label'],
              sample['vote_label_mask'])
    viz_obb(sample['point_clouds'], sample['center_label'],
            sample['box_label_mask'], sample['heading_class_label'],
            sample['heading_residual_label'], sample['size_class_label'],
            sample['size_residual_label'])
output_dir = '../data/ShapeNet_v1_point_cloud/03636649/point_cloud_clean_full_ds'
if not os.path.exists(output_dir):
    os.makedirs(output_dir)
down_sample_rate = 0.125

ply_filename_list = [
    os.path.join(point_cloud_dir, f) for f in os.listdir(point_cloud_dir)
]
ply_filename_list.sort()

for pf in tqdm(ply_filename_list):
    points = pc_util.read_ply_xyz(pf)

    choice = np.random.choice(points.shape[0],
                              int(points.shape[0] * down_sample_rate))

    sampled_points = points[choice]

    if sampled_points.shape[0] < 1000:
        print('Skip, probably empty scan. %s' % (pf))
        continue

    # ensure that the bbox is centerred at the original
    pts_min = np.amin(sampled_points, axis=0, keepdims=True)
    pts_max = np.amax(sampled_points, axis=0, keepdims=True)
    bbox_center = (pts_min + pts_max) / 2.0
    sampled_points = sampled_points - bbox_center

    output_filename = os.path.join(output_dir, os.path.basename(pf))
    pc_util.write_ply(sampled_points, output_filename)
def dump_results(end_points, dump_dir, config, inference_switch=False):
    ''' Dump results.

    Args:
        end_points: dict
            {..., pred_mask}
            pred_mask is a binary mask array of size (batch_size, num_proposal) computed by running NMS and empty box removal
    Returns:
        None
    '''
    if not os.path.exists(dump_dir):
        os.system('mkdir %s'%(dump_dir))

    # INPUT
    point_clouds = end_points['point_clouds'].cpu().numpy()
    batch_size = point_clouds.shape[0]

    # NETWORK OUTPUTS
    seed_xyz = end_points['seed_xyz'].detach().cpu().numpy() # (B,num_seed,3)
    if 'vote_xyz' in end_points:
        aggregated_vote_xyz = end_points['aggregated_vote_xyz'].detach().cpu().numpy()
        vote_xyz = end_points['vote_xyz'].detach().cpu().numpy() # (B,num_seed,3)
        aggregated_vote_xyz = end_points['aggregated_vote_xyz'].detach().cpu().numpy()
    objectness_scores = end_points['objectness_scores'].detach().cpu().numpy() # (B,K,2)
    pred_center = end_points['center'].detach().cpu().numpy() # (B,K,3)
    pred_heading_class = torch.argmax(end_points['heading_scores'], -1) # B,num_proposal
    pred_heading_residual = torch.gather(end_points['heading_residuals'], 2, pred_heading_class.unsqueeze(-1)) # B,num_proposal,1
    pred_heading_class = pred_heading_class.detach().cpu().numpy() # B,num_proposal
    pred_heading_residual = pred_heading_residual.squeeze(2).detach().cpu().numpy() # B,num_proposal
    pred_size_class = torch.argmax(end_points['size_scores'], -1) # B,num_proposal
    pred_size_residual = torch.gather(end_points['size_residuals'], 2, pred_size_class.unsqueeze(-1).unsqueeze(-1).repeat(1,1,1,3)) # B,num_proposal,1,3
    pred_size_residual = pred_size_residual.squeeze(2).detach().cpu().numpy() # B,num_proposal,3

    # OTHERS
    pred_mask = end_points['pred_mask'] # B,num_proposal
    idx_beg = 0

    for i in range(batch_size):
        pc = point_clouds[i,:,:]
        objectness_prob = softmax(objectness_scores[i,:,:])[:,1] # (K,)

        # Dump various point clouds
        pc_util.write_ply(pc, os.path.join(dump_dir, '%06d_pc.ply'%(idx_beg+i)))
        pc_util.write_ply(seed_xyz[i,:,:], os.path.join(dump_dir, '%06d_seed_pc.ply'%(idx_beg+i)))
        #pc_util.write_ply_rgb(pc[:,0:3], (pc[:,3:]*256).astype(np.int8),os.path.join(dump_dir, '%06d_rgb_pc.ply'%(idx_beg+i))) #jason color
        if 'vote_xyz' in end_points:
            pc_util.write_ply(end_points['vote_xyz'][i,:,:], os.path.join(dump_dir, '%06d_vgen_pc.ply'%(idx_beg+i)))
            pc_util.write_ply(aggregated_vote_xyz[i,:,:], os.path.join(dump_dir, '%06d_aggregated_vote_pc.ply'%(idx_beg+i)))
            pc_util.write_ply(aggregated_vote_xyz[i,:,:], os.path.join(dump_dir, '%06d_aggregated_vote_pc.ply'%(idx_beg+i)))
        pc_util.write_ply(pred_center[i,:,0:3], os.path.join(dump_dir, '%06d_proposal_pc.ply'%(idx_beg+i)))
        if np.sum(objectness_prob>DUMP_CONF_THRESH)>0:
            pc_util.write_ply(pred_center[i,objectness_prob>DUMP_CONF_THRESH,0:3], os.path.join(dump_dir, '%06d_confident_proposal_pc.ply'%(idx_beg+i)))

        # Dump predicted bounding boxes
        if np.sum(objectness_prob>DUMP_CONF_THRESH)>0:
            num_proposal = pred_center.shape[1]
            obbs = []
            for j in range(num_proposal):
                obb = config.param2obb(pred_center[i,j,0:3], pred_heading_class[i,j], pred_heading_residual[i,j],
                                pred_size_class[i,j], pred_size_residual[i,j])
                obbs.append(obb)
            if len(obbs)>0:
                obbs = np.vstack(tuple(obbs)) # (num_proposal, 7)
                pc_util.write_oriented_bbox(obbs[objectness_prob>DUMP_CONF_THRESH,:], os.path.join(dump_dir, '%06d_pred_confident_bbox.ply'%(idx_beg+i)))
                pc_util.write_oriented_bbox(obbs[np.logical_and(objectness_prob>DUMP_CONF_THRESH, pred_mask[i,:]==1),:], os.path.join(dump_dir, '%06d_pred_confident_nms_bbox.ply'%(idx_beg+i)))
                pc_util.write_oriented_bbox(obbs[pred_mask[i,:]==1,:], os.path.join(dump_dir, '%06d_pred_nms_bbox.ply'%(idx_beg+i)))
                pc_util.write_oriented_bbox(obbs, os.path.join(dump_dir, '%06d_pred_bbox.ply'%(idx_beg+i)))

    # Return if it is at inference time. No dumping of groundtruths
    if inference_switch:
        return

    # LABELS
    gt_center = end_points['center_label'].cpu().numpy() # (B,MAX_NUM_OBJ,3)
    gt_mask = end_points['box_label_mask'].cpu().numpy() # B,K2
    gt_heading_class = end_points['heading_class_label'].cpu().numpy() # B,K2
    gt_heading_residual = end_points['heading_residual_label'].cpu().numpy() # B,K2
    gt_size_class = end_points['size_class_label'].cpu().numpy() # B,K2
    gt_size_residual = end_points['size_residual_label'].cpu().numpy() # B,K2,3
    objectness_label = end_points['objectness_label'].detach().cpu().numpy() # (B,K,)
    objectness_mask = end_points['objectness_mask'].detach().cpu().numpy() # (B,K,)

    for i in range(batch_size):
        if np.sum(objectness_label[i,:])>0:
            pc_util.write_ply(pred_center[i,objectness_label[i,:]>0,0:3], os.path.join(dump_dir, '%06d_gt_positive_proposal_pc.ply'%(idx_beg+i)))
        if np.sum(objectness_mask[i,:])>0:
            pc_util.write_ply(pred_center[i,objectness_mask[i,:]>0,0:3], os.path.join(dump_dir, '%06d_gt_mask_proposal_pc.ply'%(idx_beg+i)))
        pc_util.write_ply(gt_center[i,:,0:3], os.path.join(dump_dir, '%06d_gt_centroid_pc.ply'%(idx_beg+i)))
        pc_util.write_ply_color(pred_center[i,:,0:3], objectness_label[i,:], os.path.join(dump_dir, '%06d_proposal_pc_objectness_label.obj'%(idx_beg+i)))

        # Dump GT bounding boxes
        obbs = []
        for j in range(gt_center.shape[1]):
            if gt_mask[i,j] == 0: continue
            obb = config.param2obb(gt_center[i,j,0:3], gt_heading_class[i,j], gt_heading_residual[i,j],
                            gt_size_class[i,j], gt_size_residual[i,j])
            obbs.append(obb)
        if len(obbs)>0:
            obbs = np.vstack(tuple(obbs)) # (num_gt_objects, 7)
            pc_util.write_oriented_bbox(obbs, os.path.join(dump_dir, '%06d_gt_bbox.ply'%(idx_beg+i)))

    # OPTIONALL, also dump prediction and gt details
    if 'batch_pred_map_cls' in end_points:
        for ii in range(batch_size):
            fout = open(os.path.join(dump_dir, '%06d_pred_map_cls.txt'%(ii)), 'w')
            for t in end_points['batch_pred_map_cls'][ii]:
                fout.write(str(t[0])+' ')
                fout.write(",".join([str(x) for x in list(t[1].flatten())]))
                fout.write(' '+str(t[2]))
                fout.write('\n')
            fout.close()
    if 'batch_gt_map_cls' in end_points:
        for ii in range(batch_size):
            fout = open(os.path.join(dump_dir, '%06d_gt_map_cls.txt'%(ii)), 'w')
            for t in end_points['batch_gt_map_cls'][ii]:
                fout.write(str(t[0])+' ')
                fout.write(",".join([str(x) for x in list(t[1].flatten())]))
                fout.write('\n')
            fout.close()
Exemple #21
0
        os.makedirs(out_dir)
    if not os.path.exists(out_gt_dir):
        os.mkdir(out_gt_dir)
    if not os.path.exists(out_recon_dir):
        os.mkdir(out_recon_dir)
    if not os.path.exists(out_recon_mesh_dir):
        os.mkdir(out_recon_mesh_dir)

    df = read_df_from_txt(df_txt_fn)
    df_mesh = get_isosurface(df, iso_val)

    cls_id, mdl_id = get_clsId_modelId(df_txt_fn)
    scanned_pc_filename = os.path.join(SHAPENET_POINTCLOUD_DIR, cls_id, 'point_cloud_clean', mdl_id+'_clean.ply')
    if not os.path.exists(scanned_pc_filename):
        print('No scanning available: %s'%(scanned_pc_filename))
        continue
    scan_pc = pc_util.read_ply_xyz(scanned_pc_filename)
    if 'v1' in SHAPENET_POINTCLOUD_DIR:
        # for v1 data, rotate it to align with v2
        scan_pc = pc_util.rotate_point_cloud_by_axis_angle(scan_pc, [0,1,0], 90)
    scan_pc =pc_util.sample_point_cloud(scan_pc, points_sample_nb)
    pc_util.write_ply(scan_pc, os.path.join(out_gt_dir, mdl_id+'.ply'))

    df_mesh = align_dfmesh_scanpc(df_mesh, dim, scan_pc)
    df_mesh.export(os.path.join(out_recon_mesh_dir, mdl_id+'.ply'))

    #recon_samples, _ = trimesh.sample.sample_surface_even(df_mesh, points_sample_nb)
    recon_samples, _ = trimesh.sample.sample_surface(df_mesh, points_sample_nb)
    pc_util.write_ply(np.array(recon_samples), os.path.join(out_recon_dir, mdl_id+'.ply'))