def main(): # Load dataset data = datasets.load_iris() X = normalize(data.data[data.target != 0]) y = data.target[data.target != 0] y[y == 1] = 0 y[y == 2] = 1 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, seed=1) clf = LogisticRegression(gradient_descent=True) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print("Accuracy:", accuracy) # Reduce dimension to two using PCA and plot the results pca = PCA() pca.plot_in_2d(X_test, y_pred, title="Logistic Regression", accuracy=accuracy)
def main(): data = datasets.load_iris() X = normalize(data.data) y = data.target X_train, X_test, y_train, y_test = train_test_split(X, y, 0.3) knn = KNN(3) y_pred = knn.predict(X_test, X_train, y_train) accuracy = accuracy_score(y_pred, y_test) print("accuracy is ", accuracy) pca = PCA() pca.plot_in_2d(X_test, y_pred, title="knn", accuracy=accuracy)