Exemple #1
0
def step_by_step(imgpath):
    img = cv2.imread(imgpath)
    winlist = pcn.detect(img)
    pcn.draw(img, winlist)
    cv2.imshow("Image", img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
Exemple #2
0
def face_detection():
    cam = cv2.VideoCapture(0)
    global preFaceCount
    while cam.isOpened():
        ret, img = cam.read()
        img = rescale_frame(img, percent=35)
        clone_img = copy.copy(img)

        winlist = pcn.detect(img)
        drawed_img = pcn.draw(img, winlist)

        cv2.imshow('window', img)

        if cv2.waitKey(1) & 0xFF == ord('s'):
            face = winlist[0]
            x1 = face.x
            y1 = face.y
            x2 = face.width + face.x - 1
            y2 = face.width + face.y - 1
            aligned_image = clone_img[y1:y2, x1:x2]

            retval, buffer = cv2.imencode('.jpg', aligned_image)
            jpg_as_text = base64.b64encode(buffer)
            data = {"image": jpg_as_text, "user_id": username}
            r = requests.post(url="http://68.183.226.196:1210/register",
                              data=data)
            if (r == "OK"):
                print("OK")
            break
Exemple #3
0
def face_detection():
    cam = cv2.VideoCapture(0)
    global preFaceCount
    preFaceCount = 0
    while cam.isOpened():
        ret, img = cam.read()
        img = rescale_frame(img, percent=35)

        clone_img = copy.copy(img)

        winlist = pcn.detect(img)
        curFaceCount = len(winlist)
        if (curFaceCount > preFaceCount):
            if (len(winlist) > 0):
                for win in winlist:
                    face = winlist[0]
                    x1 = face.x
                    y1 = face.y
                    x2 = face.width + face.x - 1
                    y2 = face.width + face.y - 1
                    aligned_image = clone_img[y1:y2, x1:x2]
                    q.put(aligned_image)

        drawed_img = pcn.draw(img, winlist)

        cv2.imshow('window', img)

        preFaceCount = curFaceCount
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
Exemple #4
0
def face_detector():
    global fisheye_frame
    global detected_frame
    global winlist
    while True:
        if type(fisheye_frame)!=type(None):
            winlist = pcn.detect(fisheye_frame)
            detected_frame= pcn.draw(fisheye_frame, winlist)
 def draw_face(self):
     if self.winlist:
         self.frame = pcn.draw(self.frame, self.winlist)
Exemple #6
0
import cv2

import pcn

print("pcn imported")
cap = cv2.VideoCapture("/dev/video0")
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 960)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1280)
cap.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter.fourcc('M', 'J', 'P', 'G'))

if __name__ == '__main__':
    # network detection
    print("in main")
    while cap.isOpened():
        ret, img = cap.read()
        print("compute face")
        winlist = pcn.detect(img)
        img = pcn.draw(img, winlist)
        cv2.imshow('PCN', img)
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
Exemple #7
0
def calcEmbedsRec(urlNew):

    #initialize identified names
    recognized_names = []

    print('Received url: ', urlNew)
    device = torch.device('cuda:0')
    print('Running on device: {}'.format(device))

    mtcnn = MTCNN(image_size=160,
                  margin=0,
                  min_face_size=20,
                  thresholds=[0.6, 0.7, 0.7],
                  factor=0.709,
                  prewhiten=True,
                  device=device)

    #Function takes 2 vectors 'a' and 'b'
    #Returns the cosine similarity according to the definition of the dot product
    def cos_sim(a, b):
        dot_product = np.dot(a, b)
        norm_a = np.linalg.norm(a)
        norm_b = np.linalg.norm(b)
        return dot_product / (norm_a * norm_b)

    #cos_sim returns real numbers,where negative numbers have different interpretations.
    #So we use this function to return only positive values.
    def cos(a, b):
        minx = -1
        maxx = 1
        return (cos_sim(a, b) - minx) / (maxx - minx)

    # Define Inception Resnet V1 module (GoogLe Net)
    resnet = InceptionResnetV1(pretrained='vggface2').eval().to(device)

    # Define a dataset and data loader
    dataset = datasets.ImageFolder('student_data/Test')
    dataset.idx_to_class = {i: c for c, i in dataset.class_to_idx.items()}
    loader = DataLoader(dataset, collate_fn=lambda x: x[0])

    #Perfom MTCNN facial detection
    #Detects the face present in the image and prints the probablity of face detected in the image.
    aligned = []
    names = []
    for x, y in loader:
        x_aligned, prob = mtcnn(x, return_prob=True)
        if x_aligned is not None:
            print('Face detected with probability: {:8f}'.format(prob))
            aligned.append(x_aligned)
            names.append(dataset.idx_to_class[y])

    # Calculate the 512 face embeddings
    aligned = torch.stack(aligned).to(device)
    embeddings = resnet(aligned).to(device)

    # Print distance matrix for classes.
    #The embeddings are plotted in space and cosine distace is measured.
    cos_sim = nn.CosineSimilarity(dim=-1, eps=1e-6)
    for i in range(0, len(names)):
        emb = embeddings[i].unsqueeze(0)
        # The cosine similarity between the embeddings is given by 'dist'.
        dist = cos(embeddings[0], emb)

    dists = [[cos(e1, e2).item() for e2 in embeddings] for e1 in embeddings]
    # The print statement below is
    #Helpful for analysing the results and for determining the value of threshold.
    print(pd.DataFrame(dists, columns=names, index=names))

    i = 1
    # Haarcascade Classifier is used to detect faces through webcam.
    #It is preffered over MTCNN as it is faster. Real time basic applications needs to be fast.
    classifier = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')

    #Takes 2 vectors 'a' and 'b' .
    #Returns the cosine similarity according to the definition of the dot product.
    def cos_sim(a, b):
        dot_product = np.dot(a, b)
        norm_a = np.linalg.norm(a)
        norm_b = np.linalg.norm(b)
        return dot_product / (norm_a * norm_b)

    #cos_sim returns real numbers,where negative numbers have different interpretations.
    #So we use this function to return only positive values.
    def cos(a, b):
        minx = -1
        maxx = 1
        return (cos_sim(a, b) - minx) / (maxx - minx)

    #This is the function for doing face recognition.
    def verify(embedding, start_rec_time):
        for i, k in enumerate(embeddings):
            for j, l in enumerate(embedding):
                #Computing Cosine distance.
                dist = cos(k, l)

                #Chosen threshold is 0.85
                #Threshold is determined after seeing the table in the previous cell.
                if dist > 0.8:
                    #Name of the person identified is printed on the screen, as well as below the detecetd face (below the rectangular box).
                    text = names[i]

                    #textOnImg = text + " - Time Elapsed: " +  str(int(time.time() - start_rec_time)) + " s"
                    cv2.putText(img1, text, (boxes[j][0].astype(int),
                                             boxes[j][3].astype(int) + 17),
                                cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 255, 0),
                                2)
                    #cv2.putText(img1, textOnImg, (20, 20), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (255,0,0), 2)
                    print(text)

                    #if text in names:
                    recognized_names.append(text)
                #else:
                textOnImg = "Time Elapsed: " + str(
                    int(time.time() - start_rec_time)) + " s"
                cv2.putText(img1, textOnImg, (20, 20),
                            cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (255, 0, 0), 2)

    #Define Inception Resnet V1 module (GoogLe Net)
    resnet = InceptionResnetV1(pretrained='vggface2').eval().to(device)

    mtcnn = MTCNN(image_size=160,
                  margin=0,
                  min_face_size=20,
                  thresholds=[0.6, 0.7, 0.7],
                  factor=0.709,
                  prewhiten=True,
                  device=device,
                  keep_all=True)

    #Camera is opened. Webcam video streaming starts.
    #vs = WebcamVideoStream(src=0).start()
    print("Camera on")
    cv2.namedWindow("Detected faces")

    options = {
        "CAP_PROP_FRAME_WIDTH": 640,
        "CAP_PROP_FRAME_HEIGHT": 480,
        "CAP_PROP_FPS ": 30
    }
    output_params = {"-fourcc": "MJPG", "-fps": 30}
    writer = WriteGear(output_filename='Output.mp4',
                       compression_mode=False,
                       logging=True,
                       **output_params)
    #stream = VideoGear(source=0, time_delay=1, logging=True, **options).start()

    #url = "http://192.168.43.223:8080/shot.jpg"
    url = urlNew

    #run face recognition for 1 minute
    start_face_rec = time.time()
    end_face_rec = time.time() + 60

    while (time.time() < end_face_rec):

        # frm = stream.read()
        # if frm is None:
        #     break

        img_resp = requests.get(url)
        img_arr = np.array(bytearray(img_resp.content), dtype=np.uint8)

        img = cv2.imdecode(img_arr, -1)

        #im= vs.read()
        #Flip to act as a mirror

        im = cv2.flip(img, 1)

        #try:
        #The resize function of imutils maintains the aspect ratio
        #It provides the keyword arguments width and heightso the image can be resized to the intended width/height
        frame = imutils.resize(im, width=400)

        #Detecting faces using Haarcascade classifier.

        winlist = pcn.detect(frame)
        img1 = pcn.draw(frame, winlist)
        face = list(map(lambda win: crop_face(img1, win, 160), winlist))
        face = [f[0] for f in face]
        #cv2.imshow('Live Feed', img1)
        cnt = 1
        for f in face:
            #fc, u = crop_face(img, f)
            print('Printing Face no: ', cnt)
            cv2.imshow('Detected faces', f)
            cnt += 1

            #faces = classifier.detectMultiScale(face)
            path = "./student_data/Pics/".format(i)
            img_name = "image_{}.jpg".format(i)
            #The captured image is saved.
            cv2.imwrite(os.path.join(path, img_name), f)
            imgName = "./student_data/Pics/image_{}.jpg".format(i)

            # Get cropped and prewhitened image tensor
            img = Image.open(imgName)
            i = i + 1
            img_cropped = mtcnn(img)
            boxes, prob = mtcnn.detect(img)
            img_draw = img.copy()
            draw = ImageDraw.Draw(img_draw)
            #print(boxes)
            #Rectangular boxes are drawn on faces present in the image.
            #The detected and cropped faces are then saved.
            if (boxes is not None):
                for i, box in enumerate(boxes):
                    #draw.rectangle(box.tolist())
                    extract_face(
                        img,
                        box,
                        save_path='./student_data/Pics/Cropped_Face_{}.jpg'.
                        format(i))
                img_draw.save('./student_data/Pics/Faces_Detected.jpg')
                ima = cv2.imread('./student_data/Pics/Faces_Detected.jpg')

                #Calculate embeddings of each cropped face.
            if (img_cropped is not None):
                img_embedding = resnet(img_cropped.cuda()).to(device)

                #Call function verify.
                #Identify the person with the help of embeddings.
                cos_sim = nn.CosineSimilarity(dim=-1, eps=1e-6)
                verify(img_embedding, start_face_rec)
            #else:
            #textForImg = "Time Elapsed: " +  str(int(time.time() - start_face_rec)) + " s"
            #cv2.putText(frame, textForImg, cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (255,255,255), 2)

            #'Detecting..' window opens.
            #Rectangular boxes are drawn on detected faces.
            #The identified faces have their respective name below the box.
            cv2.imshow('Detecting...', img1)
            writer.write(img1)

        if (not face):
            #cv2.imshow(f"Time Elapsed: ${str(int(time.time() - start_face_rec))}  s" ,frame)
            textForImg = "Time Elapsed: " + str(
                int(time.time() - start_face_rec)) + " s"
            cv2.putText(img1, textForImg, (40, 40),
                        cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (255, 0, 0), 2)
            #print("no face")
            cv2.imshow('Detecting...', img1)
        # except:
        #     #In case 'try' doesn't work, "Get the image embedding" text is printed on the screen.
        #     #Run first cell
        #     text="Get the image embeddings"
        #     print(text)
        #     break

        key = cv2.waitKey(1)

        #13 is for 'Enter' key.
        #If 'Enter' key is pressed, all the windows are made to close forcefully.
        if key == 13:
            break

    print("calculating a list of all recognized faces...")

    rec_names_dict = {i: recognized_names.count(i) for i in recognized_names}

    filtered_names = []
    for key in rec_names_dict:
        if rec_names_dict[key] > 30:
            filtered_names.append(key)

    print("Total Recognized names: ", rec_names_dict)

    print("Filtered names: ", filtered_names)

    cv2.destroyAllWindows()
    writer.close()
    #vs.stop()
    #return {i:rec_names_dict[i] for i in filtered_names}
    return filtered_names