Exemple #1
0
def load_response_vars(datafile, maskfile=None, vol=True):
    """ load response variables (of any data type)"""

    if fileio.file_type(datafile) == 'nifti':
        dat = fileio.load_nifti(datafile, vol=vol)
        volmask = fileio.create_mask(dat, mask=maskfile)
        Y = fileio.vol2vec(dat, volmask).T
    else:
        Y = fileio.load(datafile)
        volmask = None
        if fileio.file_type(datafile) == 'cifti':
            Y = Y.T

    return Y, volmask
Exemple #2
0
    def estimate(self, X, y, **kwargs):

        trbefile = kwargs.pop('trbefile', None)
        if trbefile is not None:
            batch_effects_train = fileio.load(trbefile)
        else:
            print(
                'Could not find batch-effects file! Initilizing all as zeros ...'
            )
            batch_effects_train = np.zeros([X.shape[0], 1])

        self.hbr.estimate(X, y, batch_effects_train)

        return self
Exemple #3
0
    def predict(self, Xs, X=None, Y=None, **kwargs):

        tsbefile = kwargs.pop('tsbefile', None)
        if tsbefile is not None:
            batch_effects_test = fileio.load(tsbefile)
        else:
            print(
                'Could not find batch-effects file! Initilizing all as zeros ...'
            )
            batch_effects_test = np.zeros([Xs.shape[0], 1])

        pred_type = self.configs['pred_type']

        yhat, s2 = self.hbr.predict(Xs, batch_effects_test, pred=pred_type)

        return yhat.squeeze(), s2.squeeze()
def rerun_nm(processing_dir,
             log_path,
             memory,
             duration,
             binary=False):
    """
    This function reruns all failed batched in processing_dir after collect_nm
    has identified he failed batches

    * Input:
        * processing_dir        -> Full path to the processing directory
        * memory                -> Memory requirements written as string
                                   for example 4gb or 500mb
        * duration               -> The approximate duration of the job, a
                                   string with HH:MM:SS for example 01:01:01

    written by (primarily) T Wolfers, (adapted) SM Kia
    """

    if binary:
        file_extentions = '.pkl'
        failed_batches = fileio.load(processing_dir +
                                       'failed_batches' + file_extentions)
        shape = failed_batches.shape
        for n in range(0, shape[0]):
            jobpath = failed_batches[n, 0]
            print(jobpath)
            qsub_nm(job_path=jobpath,
                    log_path=log_path,
                    memory=memory,
                    duration=duration)
    else:
        file_extentions = '.txt'
        failed_batches = fileio.load_pd(processing_dir +
                                       'failed_batches' + file_extentions)
        shape = failed_batches.shape
        for n in range(0, shape[0]):
            jobpath = failed_batches.iloc[n, 0]
            print(jobpath)
            qsub_nm(job_path=jobpath,
                    log_path=log_path,
                    memory=memory,
                    duration=duration)
Exemple #5
0
    def predict(self, Xs, X=None, Y=None, **kwargs):

        tsbefile = kwargs.pop('tsbefile', None)
        if tsbefile is not None:
            batch_effects_test = fileio.load(tsbefile)
        else:
            print(
                'Could not find batch-effects file! Initilizing all as zeros ...'
            )
            batch_effects_test = np.zeros([Xs.shape[0], 1])

        pred_type = self.configs['pred_type']

        if self.configs['transferred'] == False:
            yhat, s2 = self.hbr.predict(Xs, batch_effects_test, pred=pred_type)
        else:
            raise ValueError(
                "This is a transferred model. Please use predict_on_new_sites function."
            )

        return yhat.squeeze(), s2.squeeze()
def collect_nm(processing_dir,
               job_name,
               func='estimate',
               collect=False,
               binary=False,
               batch_size=None,
               outputsuffix='_estimate'):
    
    """This function checks and collects all batches.

    ** Input:
        * processing_dir        -> Full path to the processing directory
        * collect               -> If True data is checked for failed batches
                                and collected; if False data is just checked

    ** Output:
        * Text files containing all results accross all batches the combined
          output

    written by (primarily) T Wolfers, (adapted) SM Kia
    """

    if binary:
        file_extentions = '.pkl'
    else:
        file_extentions = '.txt'

    # detect number of subjects, batches, hyperparameters and CV
    batches = glob.glob(processing_dir + 'batch_*/')
    
    count = 0
    batch_fail = []
    
    if func != 'fit':
        file_example = []
        for batch in batches:
            if file_example == []:
                file_example = glob.glob(batch + 'yhat' + outputsuffix + file_extentions)
            else:
                break
        if binary is False:
            file_example = fileio.load(file_example[0])
        else:
            file_example = pd.read_pickle(file_example[0])
        numsubjects = file_example.shape[0]
        batch_size = file_example.shape[1]
    
        # artificially creates files for batches that were not executed
        batch_dirs = glob.glob(processing_dir + 'batch_*/')
        batch_dirs = fileio.sort_nicely(batch_dirs)
        for batch in batch_dirs:
            filepath = glob.glob(batch + 'yhat' + outputsuffix + '*')
            if filepath == []:
                count = count+1
                batch1 = glob.glob(batch + '/' + job_name + '*.sh')
                print(batch1)
                batch_fail.append(batch1)
                if collect is True:
                    pRho = np.ones(batch_size)
                    pRho = pRho.transpose()
                    pRho = pd.Series(pRho)
                    fileio.save(pRho, batch + 'pRho' + outputsuffix + file_extentions)
                    
                    Rho = np.zeros(batch_size)
                    Rho = Rho.transpose()
                    Rho = pd.Series(Rho)
                    fileio.save(Rho, batch + 'Rho' + outputsuffix + file_extentions)
                    
                    rmse = np.zeros(batch_size)
                    rmse = rmse.transpose()
                    rmse = pd.Series(rmse)
                    fileio.save(rmse, batch + 'RMSE' + outputsuffix + file_extentions)
                    
                    smse = np.zeros(batch_size)
                    smse = smse.transpose()
                    smse = pd.Series(smse)
                    fileio.save(smse, batch + 'SMSE' + outputsuffix + file_extentions)
                    
                    expv = np.zeros(batch_size)
                    expv = expv.transpose()
                    expv = pd.Series(expv)
                    fileio.save(expv, batch + 'EXPV' + outputsuffix + file_extentions)
                    
                    msll = np.zeros(batch_size)
                    msll = msll.transpose()
                    msll = pd.Series(msll)
                    fileio.save(msll, batch + 'MSLL' + outputsuffix + file_extentions)
    
                    yhat = np.zeros([numsubjects, batch_size])
                    yhat = pd.DataFrame(yhat)
                    fileio.save(yhat, batch + 'yhat' + outputsuffix + file_extentions)
    
                    ys2 = np.zeros([numsubjects, batch_size])
                    ys2 = pd.DataFrame(ys2)
                    fileio.save(ys2, batch + 'ys2' + outputsuffix + file_extentions)
    
                    Z = np.zeros([numsubjects, batch_size])
                    Z = pd.DataFrame(Z)
                    fileio.save(Z, batch + 'Z' + outputsuffix + file_extentions)
    
                    if not os.path.isdir(batch + 'Models'):
                        os.mkdir('Models')
                        
                        
            else: # if more than 10% of yhat is nan then consider the batch as a failed batch
                yhat = fileio.load(filepath[0])
                if np.count_nonzero(~np.isnan(yhat))/(np.prod(yhat.shape))<0.9:
                    count = count+1
                    batch1 = glob.glob(batch + '/' + job_name + '*.sh')
                    print('More than 10% nans in '+ batch1[0])
                    batch_fail.append(batch1)
    
    # combines all output files across batches
    if collect is True:
        pRho_filenames = glob.glob(processing_dir + 'batch_*/' + 'pRho' + 
                                   outputsuffix + '*')
        if pRho_filenames:
            pRho_filenames = fileio.sort_nicely(pRho_filenames)
            pRho_dfs = []
            for pRho_filename in pRho_filenames:
                pRho_dfs.append(pd.DataFrame(fileio.load(pRho_filename)))
            pRho_dfs = pd.concat(pRho_dfs, ignore_index=True, axis=0)
            fileio.save(pRho_dfs, processing_dir + 'pRho' + outputsuffix +
                        file_extentions)
            del pRho_dfs

        Rho_filenames = glob.glob(processing_dir + 'batch_*/' + 'Rho' + 
                                   outputsuffix + '*')
        if Rho_filenames:
            Rho_filenames = fileio.sort_nicely(Rho_filenames)
            Rho_dfs = []
            for Rho_filename in Rho_filenames:
                Rho_dfs.append(pd.DataFrame(fileio.load(Rho_filename)))
            Rho_dfs = pd.concat(Rho_dfs, ignore_index=True, axis=0)
            fileio.save(Rho_dfs, processing_dir + 'Rho' + outputsuffix +
                        file_extentions)
            del Rho_dfs

        Z_filenames = glob.glob(processing_dir + 'batch_*/' + 'Z' + 
                                   outputsuffix + '*')
        if Z_filenames:
            Z_filenames = fileio.sort_nicely(Z_filenames)
            Z_dfs = []
            for Z_filename in Z_filenames:
                Z_dfs.append(pd.DataFrame(fileio.load(Z_filename)))
            Z_dfs = pd.concat(Z_dfs, ignore_index=True, axis=1)
            fileio.save(Z_dfs, processing_dir + 'Z' + outputsuffix +
                        file_extentions)
            del Z_dfs
            
        yhat_filenames = glob.glob(processing_dir + 'batch_*/' + 'yhat' + 
                                   outputsuffix + '*')
        if yhat_filenames:
            yhat_filenames = fileio.sort_nicely(yhat_filenames)
            yhat_dfs = []
            for yhat_filename in yhat_filenames:
                yhat_dfs.append(pd.DataFrame(fileio.load(yhat_filename)))
            yhat_dfs = pd.concat(yhat_dfs, ignore_index=True, axis=1)
            fileio.save(yhat_dfs, processing_dir + 'yhat' + outputsuffix +
                        file_extentions)
            del yhat_dfs

        ys2_filenames = glob.glob(processing_dir + 'batch_*/' + 'ys2' + 
                                   outputsuffix + '*')
        if ys2_filenames:
            ys2_filenames = fileio.sort_nicely(ys2_filenames)
            ys2_dfs = []
            for ys2_filename in ys2_filenames:
                ys2_dfs.append(pd.DataFrame(fileio.load(ys2_filename)))
            ys2_dfs = pd.concat(ys2_dfs, ignore_index=True, axis=1)
            fileio.save(ys2_dfs, processing_dir + 'ys2' + outputsuffix +
                        file_extentions)
            del ys2_dfs

        rmse_filenames = glob.glob(processing_dir + 'batch_*/' + 'RMSE' + 
                                   outputsuffix + '*')
        if rmse_filenames:
            rmse_filenames = fileio.sort_nicely(rmse_filenames)
            rmse_dfs = []
            for rmse_filename in rmse_filenames:
                rmse_dfs.append(pd.DataFrame(fileio.load(rmse_filename)))
            rmse_dfs = pd.concat(rmse_dfs, ignore_index=True, axis=0)
            fileio.save(rmse_dfs, processing_dir + 'RMSE' + outputsuffix +
                        file_extentions)
            del rmse_dfs

        smse_filenames = glob.glob(processing_dir + 'batch_*/' + 'SMSE' + 
                                   outputsuffix + '*')
        if smse_filenames:
            smse_filenames = fileio.sort_nicely(smse_filenames)
            smse_dfs = []
            for smse_filename in smse_filenames:
                smse_dfs.append(pd.DataFrame(fileio.load(smse_filename)))
            smse_dfs = pd.concat(smse_dfs, ignore_index=True, axis=0)
            fileio.save(smse_dfs, processing_dir + 'SMSE' + outputsuffix +
                        file_extentions)
            del smse_dfs
            
        expv_filenames = glob.glob(processing_dir + 'batch_*/' + 'EXPV' + 
                                   outputsuffix + '*')
        if expv_filenames:
            expv_filenames = fileio.sort_nicely(expv_filenames)
            expv_dfs = []
            for expv_filename in expv_filenames:
                expv_dfs.append(pd.DataFrame(fileio.load(expv_filename)))
            expv_dfs = pd.concat(expv_dfs, ignore_index=True, axis=0)
            fileio.save(expv_dfs, processing_dir + 'EXPV' + outputsuffix +
                        file_extentions)
            del expv_dfs
            
        msll_filenames = glob.glob(processing_dir + 'batch_*/' + 'MSLL' + 
                                   outputsuffix + '*')
        if msll_filenames:
            msll_filenames = fileio.sort_nicely(msll_filenames)
            msll_dfs = []
            for msll_filename in msll_filenames:
                msll_dfs.append(pd.DataFrame(fileio.load(msll_filename)))
            msll_dfs = pd.concat(msll_dfs, ignore_index=True, axis=0)
            fileio.save(msll_dfs, processing_dir + 'MSLL' + outputsuffix +
                        file_extentions)
            del msll_dfs
        
        if func != 'predict' and func != 'transfer':
            if not os.path.isdir(processing_dir + 'Models') and \
               os.path.exists(os.path.join(batches[0], 'Models')):
                os.mkdir(processing_dir + 'Models')
                
            meta_filenames = glob.glob(processing_dir + 'batch_*/Models/' + 'meta_data.md')
            mY = []
            sY = []
            mX = []
            sX = []
            if meta_filenames:
                meta_filenames = fileio.sort_nicely(meta_filenames)
                with open(meta_filenames[0], 'rb') as file:
                    meta_data = pickle.load(file)
                if meta_data['standardize']:
                    for meta_filename in meta_filenames:
                        mY.append(meta_data['mean_resp'])
                        sY.append(meta_data['std_resp'])
                        mX.append(meta_data['mean_cov'])
                        sX.append(meta_data['std_cov'])
                    meta_data['mean_resp'] = np.stack(mY) 
                    meta_data['std_resp'] = np.stack(sY) 
                    meta_data['mean_cov'] = np.stack(mX) 
                    meta_data['std_cov'] = np.stack(sX) 
                    
                with open(os.path.join(processing_dir, 'Models', 'meta_data.md'), 
                          'wb') as file:
                    pickle.dump(meta_data, file)
            
            batch_dirs = glob.glob(processing_dir + 'batch_*/')
            if batch_dirs:
                batch_dirs = fileio.sort_nicely(batch_dirs)
                for b, batch_dir in enumerate(batch_dirs):
                    src_files = glob.glob(batch_dir + 'Models/*.pkl')
                    if src_files:
                        src_files = fileio.sort_nicely(src_files)
                        for f, full_file_name in enumerate(src_files):
                            if os.path.isfile(full_file_name):
                                file_name = full_file_name.split('/')[-1]
                                n = file_name.split('_')
                                n[-1] = str(b * batch_size + f) + '.pkl'
                                n = '_'.join(n)
                                shutil.copy(full_file_name, processing_dir + 'Models/' + n)
                    elif func=='fit':
                        count = count+1
                        batch1 = glob.glob(batch_dir + '/' + job_name + '*.sh')
                        print('Failed batch: ' + batch1[0])
                        batch_fail.append(batch1)
                        
    # list batches that were not executed
    print('Number of batches that failed:' + str(count))
    batch_fail_df = pd.DataFrame(batch_fail)
    if file_extentions == '.txt':
        fileio.save_pd(batch_fail_df, processing_dir + 'failed_batches'+
                file_extentions)
    else:
        fileio.save(batch_fail_df, processing_dir +
            'failed_batches' +
            file_extentions)

    if not batch_fail:
        return 1
    else:
        return 0
Exemple #7
0
def extend(covfile, respfile, maskfile=None, **kwargs):

    alg = kwargs.pop('alg')
    if alg != 'hbr':
        print('Model extention is only possible for HBR models.')
        return
    elif (not 'model_path' in list(kwargs.keys())) or \
        (not 'output_path' in list(kwargs.keys())) or \
        (not 'trbefile' in list(kwargs.keys())) or \
        (not 'dummycovfile' in list(kwargs.keys()))or \
        (not 'dummybefile' in list(kwargs.keys())):
        print('InputError: Some mandatory arguments are missing.')
        return
    else:
        model_path = kwargs.pop('model_path')
        output_path = kwargs.pop('output_path')
        trbefile = kwargs.pop('trbefile')
        dummycovfile = kwargs.pop('dummycovfile')
        dummybefile = kwargs.pop('dummybefile')

    informative_prior = kwargs.pop('job_id', 'False') == 'True'
    generation_factor = int(kwargs.pop('generation_factor', '10'))
    job_id = kwargs.pop('job_id', None)
    batch_size = kwargs.pop('batch_size', None)
    if batch_size is not None:
        batch_size = int(batch_size)
        job_id = int(job_id) - 1

    if not os.path.isdir(output_path):
        os.mkdir(output_path)

    # load data
    print("Loading data ...")
    X = fileio.load(covfile)
    Y, maskvol = load_response_vars(respfile, maskfile)
    batch_effects_train = fileio.load(trbefile)
    X_dummy = fileio.load(dummycovfile)
    batch_effects_dummy = fileio.load(dummybefile)

    if len(Y.shape) == 1:
        Y = Y[:, np.newaxis]
    if len(X.shape) == 1:
        X = X[:, np.newaxis]
    if len(X_dummy.shape) == 1:
        X_dummy = X_dummy[:, np.newaxis]
    feature_num = Y.shape[1]

    # estimate the models for all subjects
    for i in range(feature_num):

        nm = norm_init(X)
        if batch_size is not None:  # when using nirmative_parallel
            print("Extending model ", job_id * batch_size + i)
            nm = nm.load(
                os.path.join(model_path,
                             'NM_0_' + str(job_id * batch_size + i) + '.pkl'))
        else:
            print("Extending model ", i + 1, "of", feature_num)
            nm = nm.load(os.path.join(model_path, 'NM_0_' + str(i) + '.pkl'))

        nm = nm.extend(X,
                       Y[:, i:i + 1],
                       batch_effects_train,
                       X_dummy,
                       batch_effects_dummy,
                       samples=generation_factor,
                       informative_prior=informative_prior)

        if batch_size is not None:
            nm.save(
                os.path.join(output_path,
                             'NM_0_' + str(job_id * batch_size + i) + '.pkl'))
        else:
            nm.save(os.path.join(output_path, 'NM_0_' + str(i) + '.pkl'))
Exemple #8
0
def transfer(covfile,
             respfile,
             testcov=None,
             testresp=None,
             maskfile=None,
             **kwargs):
    '''
    Transfer learning on the basis of a pre-estimated normative model by using 
    the posterior distribution over the parameters as an informed prior for 
    new data. currently only supported for HBR.
    
    Basic usage::

        transfer(covfile, respfile [extra_arguments])

    where the variables are defined below.

    :param covfile: test covariates used to predict the response variable
    :param respfile: test response variables for the normative model
    :param maskfile: mask used to apply to the data (nifti only)
    :param testcov: Test covariates
    :param testresp: Test responses
    :param model_path: Directory containing the normative model and metadata
    :param trbefile: Training batch effects file
    :param batch_size: batch size (for use with normative_parallel)
    :param job_id: batch id

    All outputs are written to disk in the same format as the input. These are:

    :outputs: * Yhat - predictive mean
              * S2 - predictive variance
              * Z - Z scores
    '''

    alg = kwargs.pop('alg')
    if alg != 'hbr':
        print('Model transferring is only possible for HBR models.')
        return
    elif (not 'model_path' in list(kwargs.keys())) or \
        (not 'output_path' in list(kwargs.keys())) or \
        (not 'trbefile' in list(kwargs.keys())):
        print('InputError: Some mandatory arguments are missing.')
        return
    else:
        model_path = kwargs.pop('model_path')
        output_path = kwargs.pop('output_path')
        trbefile = kwargs.pop('trbefile')
        batch_effects_train = fileio.load(trbefile)

    outputsuffix = kwargs.pop('outputsuffix', '_transfer')
    tsbefile = kwargs.pop('tsbefile', None)

    job_id = kwargs.pop('job_id', None)
    batch_size = kwargs.pop('batch_size', None)
    if batch_size is not None:
        batch_size = int(batch_size)
        job_id = int(job_id) - 1

    if not os.path.isdir(output_path):
        os.mkdir(output_path)

    # load data
    print("Loading data ...")
    X = fileio.load(covfile)
    Y, maskvol = load_response_vars(respfile, maskfile)
    if len(Y.shape) == 1:
        Y = Y[:, np.newaxis]
    if len(X.shape) == 1:
        X = X[:, np.newaxis]
    feature_num = Y.shape[1]
    mY = np.mean(Y, axis=0)
    sY = np.std(Y, axis=0)

    if testcov is not None:
        # we have a separate test dataset
        Xte = fileio.load(testcov)
        if len(Xte.shape) == 1:
            Xte = Xte[:, np.newaxis]
        ts_sample_num = Xte.shape[0]
        if testresp is not None:
            Yte, testmask = load_response_vars(testresp, maskfile)
            if len(Yte.shape) == 1:
                Yte = Yte[:, np.newaxis]
        else:
            Yte = np.zeros([ts_sample_num, feature_num])

        if tsbefile is not None:
            batch_effects_test = fileio.load(tsbefile)
        else:
            batch_effects_test = np.zeros([Xte.shape[0], 2])

    Yhat = np.zeros([ts_sample_num, feature_num])
    S2 = np.zeros([ts_sample_num, feature_num])
    Z = np.zeros([ts_sample_num, feature_num])

    # estimate the models for all subjects
    for i in range(feature_num):

        nm = norm_init(X)
        if batch_size is not None:  # when using normative_parallel
            print("Transferting model ", job_id * batch_size + i)
            nm = nm.load(
                os.path.join(model_path,
                             'NM_0_' + str(job_id * batch_size + i) + '.pkl'))
        else:
            print("Transferting model ", i + 1, "of", feature_num)
            nm = nm.load(os.path.join(model_path, 'NM_0_' + str(i) + '.pkl'))

        nm = nm.estimate_on_new_sites(X, Y[:, i], batch_effects_train)
        if batch_size is not None:
            nm.save(
                os.path.join(output_path,
                             'NM_0_' + str(job_id * batch_size + i) + '.pkl'))
        else:
            nm.save(os.path.join(output_path, 'NM_0_' + str(i) + '.pkl'))

        if testcov is not None:
            yhat, s2 = nm.predict_on_new_sites(Xte, batch_effects_test)
            Yhat[:, i] = yhat.squeeze()
            S2[:, i] = s2.squeeze()

    if testresp is None:
        save_results(respfile, Yhat, S2, maskvol, outputsuffix=outputsuffix)
        return (Yhat, S2)
    else:
        Z = (Yte - Yhat) / np.sqrt(S2)

        print("Evaluating the model ...")
        results = evaluate(Yte, Yhat, S2=S2, mY=mY, sY=sY)

        save_results(respfile,
                     Yhat,
                     S2,
                     maskvol,
                     Z=Z,
                     results=results,
                     outputsuffix=outputsuffix)

        return (Yhat, S2, Z)
Exemple #9
0
def predict(covfile, respfile=None, maskfile=None, **kwargs):
    '''
    Make predictions on the basis of a pre-estimated normative model 
    If only the covariates are specified then only predicted mean and variance 
    will be returned. If the test responses are also specified then quantities
    That depend on those will also be returned (Z scores and error metrics)

    Basic usage::

        predict(covfile, [extra_arguments])

    where the variables are defined below.

    :param covfile: test covariates used to predict the response variable
    :param respfile: test response variables for the normative model
    :param maskfile: mask used to apply to the data (nifti only)
    :param model_path: Directory containing the normative model and metadata
    :param output_path: Directory to store the results
    :param outputsuffix: Text string to add to the output filenames
    :param batch_size: batch size (for use with normative_parallel)
    :param job_id: batch id

    All outputs are written to disk in the same format as the input. These are:

    :outputs: * Yhat - predictive mean
              * S2 - predictive variance
              * Z - Z scores
    '''

    model_path = kwargs.pop('model_path', 'Models')
    job_id = kwargs.pop('job_id', None)
    batch_size = kwargs.pop('batch_size', None)
    output_path = kwargs.pop('output_path', '')
    outputsuffix = kwargs.pop('outputsuffix', '_predict')

    if respfile is not None and not os.path.exists(respfile):
        print("Response file does not exist. Only returning predictions")
        respfile = None
    if not os.path.isdir(model_path):
        print('Models directory does not exist!')
        return
    else:
        if os.path.exists(os.path.join(model_path, 'meta_data.md')):
            with open(os.path.join(model_path, 'meta_data.md'), 'rb') as file:
                meta_data = pickle.load(file)
            standardize = meta_data['standardize']
            mY = meta_data['mean_resp']
            sY = meta_data['std_resp']
            mX = meta_data['mean_cov']
            sX = meta_data['std_cov']
        else:
            standardize = False

    if batch_size is not None:
        batch_size = int(batch_size)
        job_id = int(job_id) - 1

    if (output_path != '') and (not os.path.isdir(output_path)):
        os.mkdir(output_path)

    # load data
    print("Loading data ...")
    X = fileio.load(covfile)
    if len(X.shape) == 1:
        X = X[:, np.newaxis]

    sample_num = X.shape[0]
    feature_num = len(glob.glob(os.path.join(model_path, 'NM_*.pkl')))

    Yhat = np.zeros([sample_num, feature_num])
    S2 = np.zeros([sample_num, feature_num])
    Z = np.zeros([sample_num, feature_num])

    if standardize:
        Xz = (X - mX[0]) / sX[0]
    else:
        Xz = X

    # estimate the models for all subjects
    for i in range(feature_num):
        print("Prediction by model ", i + 1, "of", feature_num)
        nm = norm_init(Xz)
        nm = nm.load(
            os.path.join(model_path, 'NM_' + str(0) + '_' + str(i) + '.pkl'))
        yhat, s2 = nm.predict(Xz, **kwargs)

        if standardize:
            Yhat[:, i] = yhat.squeeze() * sY[0][i] + mY[0][i]
            S2[:, i] = s2.squeeze() * sY[0][i]**2
        else:
            Yhat[:, i] = yhat.squeeze()
            S2[:, i] = s2.squeeze()

    if respfile is None:
        save_results(None, Yhat, S2, None, outputsuffix=outputsuffix)

        return (Yhat, S2)

    else:
        Y, maskvol = load_response_vars(respfile, maskfile)
        if len(Y.shape) == 1:
            Y = Y[:, np.newaxis]

        # warp the targets?
        if 'blr' in dir(nm):
            if nm.blr.warp is not None:
                warp_param = nm.blr.hyp[1:nm.blr.warp.get_n_params() + 1]
                Y = nm.blr.warp.f(Y, warp_param)

        Z = (Y - Yhat) / np.sqrt(S2)

        print("Evaluating the model ...")
        results = evaluate(Y,
                           Yhat,
                           S2=S2,
                           metrics=['Rho', 'RMSE', 'SMSE', 'EXPV'])

        print("Evaluations Writing outputs ...")
        save_results(respfile,
                     Yhat,
                     S2,
                     maskvol,
                     Z=Z,
                     outputsuffix=outputsuffix,
                     results=results,
                     save_path=output_path)

        return (Yhat, S2, Z)
Exemple #10
0
def fit(covfile, respfile, **kwargs):

    # parse keyword arguments
    maskfile = kwargs.pop('maskfile', None)
    alg = kwargs.pop('alg', 'gpr')
    savemodel = kwargs.pop('savemodel', 'True') == 'True'
    standardize = kwargs.pop('standardize', True)

    if savemodel and not os.path.isdir('Models'):
        os.mkdir('Models')

    # load data
    print("Processing data in " + respfile)
    X = fileio.load(covfile)
    Y, maskvol = load_response_vars(respfile, maskfile)
    if len(Y.shape) == 1:
        Y = Y[:, np.newaxis]
    if len(X.shape) == 1:
        X = X[:, np.newaxis]

    # find and remove bad variables from the response variables
    # note: the covariates are assumed to have already been checked
    nz = np.where(
        np.bitwise_and(np.isfinite(Y).any(axis=0),
                       np.var(Y, axis=0) != 0))[0]

    mean_resp = []
    std_resp = []
    mean_cov = []
    std_cov = []

    # standardize responses and covariates, ignoring invalid entries
    mY = np.mean(Y[:, nz], axis=0)
    sY = np.std(Y[:, nz], axis=0)
    mean_resp.append(mY)
    std_resp.append(sY)
    if standardize:
        Yz = np.zeros_like(Y)
        Yz[:, nz] = (Y[:, nz] - mY) / sY
        mX = np.mean(X, axis=0)
        sX = np.std(X, axis=0)
        Xz = (X - mX) / sX
        mean_resp.append(mY)
        std_resp.append(sY)
        mean_cov.append(mX)
        std_cov.append(sX)
    else:
        Yz = Y
        Xz = X

    # estimate the models for all subjects
    for i in range(0, len(nz)):
        print("Estimating model ", i + 1, "of", len(nz))
        nm = norm_init(Xz, Yz[:, nz[i]], alg=alg, **kwargs)
        nm = nm.estimate(Xz, Yz[:, nz[i]], **kwargs)

        if savemodel:
            nm.save('Models/NM_' + str(0) + '_' + str(nz[i]) + '.pkl')

    if savemodel:
        print('Saving model meta-data...')
        with open('Models/meta_data.md', 'wb') as file:
            pickle.dump(
                {
                    'valid_voxels': nz,
                    'mean_resp': mean_resp,
                    'std_resp': std_resp,
                    'mean_cov': mean_cov,
                    'std_cov': std_cov,
                    'regressor': alg,
                    'standardize': standardize
                }, file)

    return nm
Exemple #11
0
def estimate(covfile, respfile, **kwargs):
    """ Estimate a normative model

    This will estimate a model in one of two settings according to theparticular parameters specified (see below)
        
    * under k-fold cross-validation.
      requires respfile, covfile and cvfolds>=2
    * estimating a training dataset then applying to a second test dataset.
      requires respfile, covfile, testcov and testresp.
    * estimating on a training dataset ouput of forward maps mean and se. 
      requires respfile, covfile and testcov

    The models are estimated on the basis of data stored on disk in ascii or
    neuroimaging data formats (nifti or cifti). Ascii data should be in
    tab or space delimited format with the number of subjects in rows and the
    number of variables in columns. Neuroimaging data will be reshaped
    into the appropriate format

    Basic usage::

        estimate(covfile, respfile, [extra_arguments])

    where the variables are defined below. Note that either the cfolds
    parameter or (testcov, testresp) should be specified, but not both.

    :param respfile: response variables for the normative model
    :param covfile: covariates used to predict the response variable
    :param maskfile: mask used to apply to the data (nifti only)
    :param cvfolds: Number of cross-validation folds
    :param testcov: Test covariates
    :param testresp: Test responses
    :param alg: Algorithm for normative model
    :param configparam: Parameters controlling the estimation algorithm
    :param saveoutput: Save the output to disk? Otherwise returned as arrays
    :param outputsuffix: Text string to add to the output filenames

    All outputs are written to disk in the same format as the input. These are:

    :outputs: * yhat - predictive mean
              * ys2 - predictive variance
              * nm - normative model
              * Z - deviance scores
              * Rho - Pearson correlation between true and predicted responses
              * pRho - parametric p-value for this correlation
              * rmse - root mean squared error between true/predicted responses
              * smse - standardised mean squared error

    The outputsuffix may be useful to estimate multiple normative models in the
    same directory (e.g. for custom cross-validation schemes)
    """

    # parse keyword arguments
    maskfile = kwargs.pop('maskfile', None)
    cvfolds = kwargs.pop('cvfolds', None)
    testcov = kwargs.pop('testcov', None)
    testresp = kwargs.pop('testresp', None)
    alg = kwargs.pop('alg', 'gpr')
    outputsuffix = kwargs.pop('outputsuffix', '_estimate')
    standardize = kwargs.pop('standardize', 'True')
    warp = kwargs.get('warp', None)

    # convert from strings if necessary
    if type(standardize) is str:
        standardize = standardize == 'True'
    saveoutput = kwargs.pop('saveoutput', 'True')
    if type(saveoutput) is str:
        saveoutput = saveoutput == 'True'
    savemodel = kwargs.pop('savemodel', 'False')
    if type(savemodel) is str:
        savemodel = savemodel == 'True'

    if savemodel and not os.path.isdir('Models'):
        os.mkdir('Models')

    # load data
    print("Processing data in " + respfile)
    X = fileio.load(covfile)
    Y, maskvol = load_response_vars(respfile, maskfile)
    if len(Y.shape) == 1:
        Y = Y[:, np.newaxis]
    if len(X.shape) == 1:
        X = X[:, np.newaxis]
    Nmod = Y.shape[1]

    if (testcov is not None) and (cvfolds is
                                  None):  # we have a separate test dataset

        run_cv = False
        cvfolds = 1
        Xte = fileio.load(testcov)
        if len(Xte.shape) == 1:
            Xte = Xte[:, np.newaxis]
        if testresp is not None:
            Yte, testmask = load_response_vars(testresp, maskfile)
            if len(Yte.shape) == 1:
                Yte = Yte[:, np.newaxis]
        else:
            sub_te = Xte.shape[0]
            Yte = np.zeros([sub_te, Nmod])

        # treat as a single train-test split
        testids = range(X.shape[0], X.shape[0] + Xte.shape[0])
        splits = CustomCV((range(0, X.shape[0]), ), (testids, ))

        Y = np.concatenate((Y, Yte), axis=0)
        X = np.concatenate((X, Xte), axis=0)

    else:
        run_cv = True
        # we are running under cross-validation
        splits = KFold(n_splits=cvfolds)
        testids = range(0, X.shape[0])

    # find and remove bad variables from the response variables
    # note: the covariates are assumed to have already been checked
    nz = np.where(
        np.bitwise_and(np.isfinite(Y).any(axis=0),
                       np.var(Y, axis=0) != 0))[0]

    # run cross-validation loop
    Yhat = np.zeros_like(Y)
    S2 = np.zeros_like(Y)
    Z = np.zeros_like(Y)
    nlZ = np.zeros((Nmod, cvfolds))

    mean_resp = []
    std_resp = []
    mean_cov = []
    std_cov = []

    if warp is not None:
        Ywarp = np.zeros_like(Yhat)
        mean_resp_warp = [np.zeros(Y.shape[1]) for s in range(splits.n_splits)]
        std_resp_warp = [np.zeros(Y.shape[1]) for s in range(splits.n_splits)]

    for idx in enumerate(splits.split(X)):

        fold = idx[0]
        tr = idx[1][0]
        te = idx[1][1]

        # standardize responses and covariates, ignoring invalid entries
        iy, jy = np.ix_(tr, nz)
        mY = np.mean(Y[iy, jy], axis=0)
        sY = np.std(Y[iy, jy], axis=0)
        mean_resp.append(mY)
        std_resp.append(sY)
        if standardize:
            Yz = np.zeros_like(Y)
            Yz[:, nz] = (Y[:, nz] - mY) / sY
            mX = np.mean(X[tr, :], axis=0)
            sX = np.std(X[tr, :], axis=0)
            Xz = (X - mX) / sX
            mean_cov.append(mX)
            std_cov.append(sX)
        else:
            Yz = Y
            Xz = X

        # estimate the models for all subjects
        for i in range(0, len(nz)):
            print("Estimating model ", i + 1, "of", len(nz))
            nm = norm_init(Xz[tr, :], Yz[tr, nz[i]], alg=alg, **kwargs)
            try:
                nm = nm.estimate(Xz[tr, :], Yz[tr, nz[i]], **kwargs)

                yhat, s2 = nm.predict(Xz[te, :], Xz[tr, :], Yz[tr, nz[i]],
                                      **kwargs)

                if savemodel:
                    nm.save('Models/NM_' + str(fold) + '_' + str(nz[i]) +
                            '.pkl')

                if standardize:
                    Yhat[te, nz[i]] = yhat * sY[i] + mY[i]
                    S2[te, nz[i]] = s2 * sY[i]**2
                else:
                    Yhat[te, nz[i]] = yhat
                    S2[te, nz[i]] = s2

                nlZ[nz[i], fold] = nm.neg_log_lik

                if (run_cv or testresp is not None):
                    # warp the labels?
                    if warp is not None:
                        warp_param = nm.blr.hyp[1:nm.blr.warp.get_n_params() +
                                                1]
                        Ywarp[te,
                              nz[i]] = nm.blr.warp.f(Y[te, nz[i]], warp_param)
                        Ytest = Ywarp[te, nz[i]]

                        # Save warped mean of the training data (for MSLL)
                        yw = nm.blr.warp.f(Y[tr, nz[i]], warp_param)
                        mean_resp_warp[fold][i] = np.mean(yw)
                        std_resp_warp[fold][i] = np.std(yw)
                    else:
                        Ytest = Y[te, nz[i]]

                    Z[te, nz[i]] = (Ytest - Yhat[te, nz[i]]) / \
                                    np.sqrt(S2[te, nz[i]])

            except Exception as e:
                exc_type, exc_obj, exc_tb = sys.exc_info()
                fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1]
                print("Model ", i + 1, "of", len(nz),
                      "FAILED!..skipping and writing NaN to outputs")
                print("Exception:")
                print(e)
                print(exc_type, fname, exc_tb.tb_lineno)

                Yhat[te, nz[i]] = float('nan')
                S2[te, nz[i]] = float('nan')
                nlZ[nz[i], fold] = float('nan')
                if testcov is None:
                    Z[te, nz[i]] = float('nan')
                else:
                    if testresp is not None:
                        Z[te, nz[i]] = float('nan')

    if savemodel:
        print('Saving model meta-data...')
        with open('Models/meta_data.md', 'wb') as file:
            pickle.dump(
                {
                    'valid_voxels': nz,
                    'fold_num': cvfolds,
                    'mean_resp': mean_resp,
                    'std_resp': std_resp,
                    'mean_cov': mean_cov,
                    'std_cov': std_cov,
                    'regressor': alg,
                    'standardize': standardize
                }, file)

    # compute performance metrics
    if (run_cv or testresp is not None):
        print("Evaluating the model ...")
        if warp is None:
            results = evaluate(Y[testids, :],
                               Yhat[testids, :],
                               S2=S2[testids, :],
                               mY=mean_resp[0],
                               sY=std_resp[0])
        else:
            results = evaluate(Ywarp[testids, :],
                               Yhat[testids, :],
                               S2=S2[testids, :],
                               mY=mean_resp_warp[0],
                               sY=std_resp_warp[0])

    # Set writing options
    if saveoutput:
        if (run_cv or testresp is not None):
            save_results(respfile,
                         Yhat[testids, :],
                         S2[testids, :],
                         maskvol,
                         Z=Z[testids, :],
                         results=results,
                         outputsuffix=outputsuffix)

        else:
            save_results(respfile,
                         Yhat[testids, :],
                         S2[testids, :],
                         maskvol,
                         outputsuffix=outputsuffix)

    else:
        if (run_cv or testresp is not None):
            output = (Yhat[testids, :], S2[testids, :], nm, Z[testids, :],
                      results)
        else:
            output = (Yhat[testids, :], S2[testids, :], nm)

        return output
Exemple #12
0
def predict(covfile, respfile, maskfile=None, **kwargs):
    '''
    Make predictions on the basis of a pre-estimated normative model 
    If only the covariates are specified then only predicted mean and variance 
    will be returned. If the test responses are also specified then quantities
    That depend on those will also be returned (Z scores and error metrics)

    Basic usage::

        predict(covfile, [extra_arguments])

    where the variables are defined below.

    :param covfile: test covariates used to predict the response variable
    :param respfile: test response variables for the normative model
    :param maskfile: mask used to apply to the data (nifti only)
    :param model_path: Directory containing the normative model and metadata.
     When using parallel prediction, do not pass the model path. It will be 
     automatically decided.
    :param outputsuffix: Text string to add to the output filenames
    :param batch_size: batch size (for use with normative_parallel)
    :param job_id: batch id

    All outputs are written to disk in the same format as the input. These are:

    :outputs: * Yhat - predictive mean
              * S2 - predictive variance
              * Z - Z scores
    '''
    
    
    model_path = kwargs.pop('model_path', 'Models')
    job_id = kwargs.pop('job_id', None)
    batch_size = kwargs.pop('batch_size', None)
    outputsuffix = kwargs.pop('outputsuffix', '_predict')
    inputsuffix = kwargs.pop('inputsuffix', '_estimate')
    alg = kwargs.pop('alg')
        
    if respfile is not None and not os.path.exists(respfile):
        print("Response file does not exist. Only returning predictions")
        respfile = None
    if not os.path.isdir(model_path):
        print('Models directory does not exist!')
        return
    else:
        if os.path.exists(os.path.join(model_path, 'meta_data.md')):
            with open(os.path.join(model_path, 'meta_data.md'), 'rb') as file:
                meta_data = pickle.load(file)
            inscaler = meta_data['inscaler']
            outscaler = meta_data['outscaler']
            mY = meta_data['mean_resp']
            sY = meta_data['std_resp']
            scaler_cov = meta_data['scaler_cov']
            scaler_resp = meta_data['scaler_resp']
            meta_data = True
        else:
            print("No meta-data file is found!")
            inscaler = 'None'
            outscaler = 'None'
            meta_data = False

    if batch_size is not None:
        batch_size = int(batch_size)
        job_id = int(job_id) - 1

    
    # load data
    print("Loading data ...")
    X = fileio.load(covfile)
    if len(X.shape) == 1:
        X = X[:, np.newaxis]
    
    sample_num = X.shape[0]
    feature_num = len(glob.glob(os.path.join(model_path, 'NM_*' + inputsuffix + 
                                             '.pkl')))

    Yhat = np.zeros([sample_num, feature_num])
    S2 = np.zeros([sample_num, feature_num])
    Z = np.zeros([sample_num, feature_num])
    
    if inscaler in ['standardize', 'minmax', 'robminmax']:
        Xz = scaler_cov[0].transform(X)
    else:
        Xz = X
    
    # estimate the models for all subjects
    for i in range(feature_num):
        print("Prediction by model ", i+1, "of", feature_num)      
        nm = norm_init(Xz)
        nm = nm.load(os.path.join(model_path, 'NM_' + str(0) + '_' + 
                                  str(i) + inputsuffix + '.pkl'))
        if (alg!='hbr' or nm.configs['transferred']==False):
            yhat, s2 = nm.predict(Xz, **kwargs)
        else:
            tsbefile = kwargs.pop('tsbefile') 
            batch_effects_test = fileio.load(tsbefile)
            yhat, s2 = nm.predict_on_new_sites(Xz, batch_effects_test)
        
        if outscaler == 'standardize': 
            Yhat[:, i] = scaler_resp[0].inverse_transform(yhat, index=i)
            S2[:, i] = s2.squeeze() * sY[0][i]**2
        elif outscaler in ['minmax', 'robminmax']:
            Yhat[:, i] = scaler_resp[0].inverse_transform(yhat, index=i)
            S2[:, i] = s2 * (scaler_resp[0].max[i] - scaler_resp[0].min[i])**2
        else:
            Yhat[:, i] = yhat.squeeze()
            S2[:, i] = s2.squeeze()

    if respfile is None:
        save_results(None, Yhat, S2, None, outputsuffix=outputsuffix)
        
        return (Yhat, S2)
    
    else:
        Y, maskvol = load_response_vars(respfile, maskfile)
        if len(Y.shape) == 1:
            Y = Y[:, np.newaxis]
        
        # warp the targets?
        if 'blr' in dir(nm):
            if nm.blr.warp is not None:
                warp_param = nm.blr.hyp[1:nm.blr.warp.get_n_params()+1] 
                Y = nm.blr.warp.f(Y, warp_param)
        
        Z = (Y - Yhat) / np.sqrt(S2)
        
        print("Evaluating the model ...")
        if meta_data:
            results = evaluate(Y, Yhat, S2=S2, mY=mY[0], sY=sY[0])
        else:    
            results = evaluate(Y, Yhat, S2=S2, 
                           metrics = ['Rho', 'RMSE', 'SMSE', 'EXPV'])
        
        print("Evaluations Writing outputs ...")
        save_results(respfile, Yhat, S2, maskvol, Z=Z, 
                     outputsuffix=outputsuffix, results=results)
        
        return (Yhat, S2, Z)
Exemple #13
0
def fit(covfile, respfile, **kwargs):
    
    # parse keyword arguments 
    maskfile = kwargs.pop('maskfile',None)
    alg = kwargs.pop('alg','gpr')
    savemodel = kwargs.pop('savemodel','True')=='True'
    outputsuffix = kwargs.pop('outputsuffix','_fit')
    inscaler = kwargs.pop('inscaler','None')
    outscaler = kwargs.pop('outscaler','None')
    
    if savemodel and not os.path.isdir('Models'):
        os.mkdir('Models')

    # load data
    print("Processing data in " + respfile)
    X = fileio.load(covfile)
    Y, maskvol = load_response_vars(respfile, maskfile)
    if len(Y.shape) == 1:
        Y = Y[:, np.newaxis]
    if len(X.shape) == 1:
        X = X[:, np.newaxis]
    
    # find and remove bad variables from the response variables
    # note: the covariates are assumed to have already been checked
    nz = np.where(np.bitwise_and(np.isfinite(Y).any(axis=0),
                                 np.var(Y, axis=0) != 0))[0]        
    
    scaler_resp = []
    scaler_cov = []
    mean_resp = [] # this is just for computing MSLL
    std_resp = []   # this is just for computing MSLL
    
    # standardize responses and covariates, ignoring invalid entries
    mY = np.mean(Y[:, nz], axis=0)
    sY = np.std(Y[:, nz], axis=0)
    mean_resp.append(mY)
    std_resp.append(sY)
    
    if inscaler in ['standardize', 'minmax', 'robminmax']:
        X_scaler = scaler(inscaler)
        Xz = X_scaler.fit_transform(X)
        scaler_cov.append(X_scaler)
    else:
        Xz = X
        
    if outscaler in ['standardize', 'minmax', 'robminmax']:
        Yz = np.zeros_like(Y)
        Y_scaler = scaler(outscaler)
        Yz[:, nz] = Y_scaler.fit_transform(Y[:, nz])
        scaler_resp.append(Y_scaler)
    else:
        Yz = Y

    # estimate the models for all subjects
    for i in range(0, len(nz)):  
        print("Estimating model ", i+1, "of", len(nz))
        nm = norm_init(Xz, Yz[:, nz[i]], alg=alg, **kwargs)
        nm = nm.estimate(Xz, Yz[:, nz[i]], **kwargs)     
            
        if savemodel:
            nm.save('Models/NM_' + str(0) + '_' + str(nz[i]) + outputsuffix + 
                    '.pkl' )

    if savemodel:
        print('Saving model meta-data...')
        with open('Models/meta_data.md', 'wb') as file:
            pickle.dump({'valid_voxels':nz,
                         'mean_resp':mean_resp, 'std_resp':std_resp, 
                         'scaler_cov':scaler_cov, 'scaler_resp':scaler_resp, 
                         'regressor':alg, 'inscaler':inscaler,
                         'outscaler':outscaler}, file, protocol=PICKLE_PROTOCOL)
        
    return nm
Exemple #14
0
def transfer(covfile,
             respfile,
             testcov=None,
             testresp=None,
             maskfile=None,
             **kwargs):

    alg = kwargs.pop('alg')
    if alg != 'hbr':
        print('Model transferring is only possible for HBR models.')
        return
    elif (not 'model_path' in list(kwargs.keys())) or \
        (not 'output_path' in list(kwargs.keys())) or \
        (not 'trbefile' in list(kwargs.keys())):
        print('InputError: Some mandatory arguments are missing.')
        return
    else:
        model_path = kwargs.pop('model_path')
        output_path = kwargs.pop('output_path')
        trbefile = kwargs.pop('trbefile')
        batch_effects_train = fileio.load(trbefile)

    outputsuffix = kwargs.pop('outputsuffix', '_transfer')
    tsbefile = kwargs.pop('tsbefile', None)

    job_id = kwargs.pop('job_id', None)
    batch_size = kwargs.pop('batch_size', None)
    if batch_size is not None:
        batch_size = int(batch_size)
        job_id = int(job_id) - 1

    if not os.path.isdir(output_path):
        os.mkdir(output_path)

    # load data
    print("Loading data ...")
    X = fileio.load(covfile)
    Y, maskvol = load_response_vars(respfile, maskfile)
    if len(Y.shape) == 1:
        Y = Y[:, np.newaxis]
    if len(X.shape) == 1:
        X = X[:, np.newaxis]
    feature_num = Y.shape[1]
    mY = np.mean(Y, axis=0)
    sY = np.std(Y, axis=0)

    if testcov is not None:
        # we have a separate test dataset
        Xte = fileio.load(testcov)
        if len(Xte.shape) == 1:
            Xte = Xte[:, np.newaxis]
        ts_sample_num = Xte.shape[0]
        if testresp is not None:
            Yte, testmask = load_response_vars(testresp, maskfile)
            if len(Yte.shape) == 1:
                Yte = Yte[:, np.newaxis]
        else:
            Yte = np.zeros([ts_sample_num, feature_num])

        if tsbefile is not None:
            batch_effects_test = fileio.load(tsbefile)
        else:
            batch_effects_test = np.zeros([Xte.shape[0], 2])

    Yhat = np.zeros([ts_sample_num, feature_num])
    S2 = np.zeros([ts_sample_num, feature_num])
    Z = np.zeros([ts_sample_num, feature_num])

    # estimate the models for all subjects
    for i in range(feature_num):

        nm = norm_init(X)
        if batch_size is not None:  # when using normative_parallel
            print("Transferting model ", job_id * batch_size + i)
            nm = nm.load(
                os.path.join(model_path,
                             'NM_0_' + str(job_id * batch_size + i) + '.pkl'))
        else:
            print("Transferting model ", i + 1, "of", feature_num)
            nm = nm.load(os.path.join(model_path, 'NM_0_' + str(i) + '.pkl'))

        nm = nm.estimate_on_new_sites(X, Y[:, i], batch_effects_train)
        if batch_size is not None:
            nm.save(
                os.path.join(output_path,
                             'NM_0_' + str(job_id * batch_size + i) + '.pkl'))
        else:
            nm.save(os.path.join(output_path, 'NM_0_' + str(i) + '.pkl'))

        if testcov is not None:
            yhat, s2 = nm.predict_on_new_sites(Xte, batch_effects_test)
            Yhat[:, i] = yhat.squeeze()
            S2[:, i] = s2.squeeze()

    if testresp is None:
        save_results(respfile, Yhat, S2, maskvol, outputsuffix=outputsuffix)
        return (Yhat, S2)
    else:
        Z = (Yte - Yhat) / np.sqrt(S2)

        print("Evaluating the model ...")
        results = evaluate(Yte, Yhat, S2=S2, mY=mY, sY=sY)

        save_results(respfile,
                     Yhat,
                     S2,
                     maskvol,
                     Z=Z,
                     results=results,
                     outputsuffix=outputsuffix)

        return (Yhat, S2, Z)
Exemple #15
0
def predict(covfile, respfile=None, maskfile=None, **kwargs):

    model_path = kwargs.pop('model_path', 'Models')
    job_id = kwargs.pop('job_id', None)
    batch_size = kwargs.pop('batch_size', None)
    output_path = kwargs.pop('output_path', '')
    outputsuffix = kwargs.pop('outputsuffix', '_predict')

    if respfile is not None and not os.path.exists(respfile):
        print("Response file does not exist. Only returning predictions")
        respfile = None
    if not os.path.isdir(model_path):
        print('Models directory does not exist!')
        return
    else:
        if os.path.exists(os.path.join(model_path, 'meta_data.md')):
            with open(os.path.join(model_path, 'meta_data.md'), 'rb') as file:
                meta_data = pickle.load(file)
            standardize = meta_data['standardize']
            mY = meta_data['mean_resp']
            sY = meta_data['std_resp']
            mX = meta_data['mean_cov']
            sX = meta_data['std_cov']
        else:
            standardize = False

    if batch_size is not None:
        batch_size = int(batch_size)
        job_id = int(job_id) - 1

    if (output_path != '') and (not os.path.isdir(output_path)):
        os.mkdir(output_path)

    # load data
    print("Loading data ...")
    X = fileio.load(covfile)
    if len(X.shape) == 1:
        X = X[:, np.newaxis]

    sample_num = X.shape[0]
    feature_num = len(glob.glob(os.path.join(model_path, 'NM_*.pkl')))

    Yhat = np.zeros([sample_num, feature_num])
    S2 = np.zeros([sample_num, feature_num])
    Z = np.zeros([sample_num, feature_num])

    if standardize:
        Xz = (X - mX[0]) / sX[0]
    else:
        Xz = X

    # estimate the models for all subjects
    for i in range(feature_num):
        print("Prediction by model ", i + 1, "of", feature_num)
        nm = norm_init(Xz)
        nm = nm.load(
            os.path.join(model_path, 'NM_' + str(0) + '_' + str(i) + '.pkl'))
        yhat, s2 = nm.predict(Xz, **kwargs)

        if standardize:
            Yhat[:, i] = yhat.squeeze() * sY[0][i] + mY[0][i]
            S2[:, i] = s2.squeeze() * sY[0][i]**2
        else:
            Yhat[:, i] = yhat.squeeze()
            S2[:, i] = s2.squeeze()

    if respfile is None:
        save_results(None, Yhat, S2, None, outputsuffix=outputsuffix)

        return (Yhat, S2)

    else:
        Y, maskvol = load_response_vars(respfile, maskfile)
        if len(Y.shape) == 1:
            Y = Y[:, np.newaxis]

        # warp the targets?
        if 'blr' in dir(nm):
            if nm.blr.warp is not None:
                warp_param = nm.blr.hyp[1:nm.blr.warp.get_n_params() + 1]
                Y = nm.blr.warp.f(Y, warp_param)

        Z = (Y - Yhat) / np.sqrt(S2)

        print("Evaluating the model ...")
        results = evaluate(Y,
                           Yhat,
                           S2=S2,
                           metrics=['Rho', 'RMSE', 'SMSE', 'EXPV'])

        print("Evaluations Writing outputs ...")
        save_results(respfile,
                     Yhat,
                     S2,
                     maskvol,
                     Z=Z,
                     outputsuffix=outputsuffix,
                     results=results,
                     save_path=output_path)

        return (Yhat, S2, Z)
    def rerun_nm(processing_dir,
                 memory,
                 duration,
                 new_memory=False,
                 new_duration=False,
                 binary=False,
                 **kwargs):
        """
        This function reruns all failed batched in processing_dir after 
        collect_nm has identified he failed batches
    
        * Input:
            * processing_dir        -> Full path to the processing directory
            * memory                -> Memory requirements written as string
                                       for example 4gb or 500mb
            * duration              -> The approximate duration of the job, a
                                       string with HH:MM:SS for example 01:01:01
            * new_memory            -> If you want to change the memory 
                                        you have to indicate it here.
            * new_duration          -> If you want to change the duration 
                                        you have to indicate it here.
        * Outputs:
            * Reruns failed batches. 
    
        written by (primarily) T Wolfers
        """
        log_path = kwargs.pop('log_path', None)

        if binary:
            file_extentions = '.pkl'
            failed_batches = fileio.load(processing_dir + 'failed_batches' +
                                         file_extentions)
            shape = failed_batches.shape
            for n in range(0, shape[0]):
                jobpath = failed_batches[n, 0]
                print(jobpath)
                if new_duration != False:
                    with fileinput.FileInput(jobpath, inplace=True) as file:
                        for line in file:
                            print(line.replace(duration, new_duration), end='')
                if new_memory != False:
                    with fileinput.FileInput(jobpath, inplace=True) as file:
                        for line in file:
                            print(line.replace(memory, new_memory), end='')
                sbatch_nm(jobpath, log_path)
        else:
            file_extentions = '.txt'
            failed_batches = fileio.load_pd(processing_dir + 'failed_batches' +
                                            file_extentions)
            shape = failed_batches.shape
            for n in range(0, shape[0]):
                jobpath = failed_batches.iloc[n, 0]
                print(jobpath)
                if new_duration != False:
                    with fileinput.FileInput(jobpath, inplace=True) as file:
                        for line in file:
                            print(line.replace(duration, new_duration), end='')
                if new_memory != False:
                    with fileinput.FileInput(jobpath, inplace=True) as file:
                        for line in file:
                            print(line.replace(memory, new_memory), end='')
                sbatch_nm(jobpath, log_path)