def __init__( self, columns=None, exclude_columns=None, drop=True, **kwargs ): self._drop = drop self.encoders = {} super_kwargs = { 'columns': columns, 'exclude_columns': exclude_columns, 'desc_temp': "Encode {}", } super_kwargs.update(**kwargs) super_kwargs['none_columns'] = OfDtypes(['object', 'category']) super().__init__(**super_kwargs)
def __init__(self, scaler, columns=None, exclude_columns=None, **kwargs): self.scaler = scaler self._kwargs = kwargs super_kwargs = { 'columns': columns, 'exclude_columns': exclude_columns, 'desc_temp': "Scale columns {}", } valid_super_kwargs = super()._init_kwargs() for key in kwargs: if key in valid_super_kwargs: super_kwargs[key] = kwargs[key] super_kwargs['none_columns'] = OfDtypes([np.number]) super().__init__(**super_kwargs)
def __init__(self, columns=None, exclude_columns=None, drop=False, non_neg=False, const_shift=None, **kwargs): self._drop = drop self._non_neg = non_neg self._const_shift = const_shift self._col_to_minval = {} super_kwargs = { 'columns': columns, 'exclude_columns': exclude_columns, 'desc_temp': "Log-transform {}", } super_kwargs.update(**kwargs) super_kwargs['none_columns'] = OfDtypes([np.number]) super().__init__(**super_kwargs)
def __init__(self, columns=None, dummy_na=False, exclude_columns=None, drop_first=True, drop=True, **kwargs): self._dummy_na = dummy_na self._drop_first = drop_first self._drop = drop self._dummy_col_map = {} self._encoder_map = {} super_kwargs = { 'columns': columns, 'exclude_columns': exclude_columns, 'desc_temp': "One-hot encode {}", } super_kwargs.update(**kwargs) super_kwargs['none_columns'] = OfDtypes(['object', 'category']) super().__init__(**super_kwargs)