Exemple #1
0
def ampoffset(time, data):
    pt, pv = peaks.conservative_peaks(time, data, pktype="peak")
    tt, tv = peaks.conservative_peaks(time, data, pktype="trough")
    tspl = UnivariateSpline(tt, tv, k=4, s=0)
    pspl = UnivariateSpline(pt, pv, k=4, s=0)
    off = tspl(time) + 0.5 * (pspl(time) - tspl(time))
    amp = 0.5 * (pspl(time) - tspl(time))
    return amp, off
def get_peaks(time,
              data,
              pktype="peak",
              refine=True,
              refine_pktype="peak",
              Npk=5,
              polyorder=3,
              splorder=3,
              minidx=200,
              peak_method="spline"):
    if pktype == "joined":
        pt, pv = peak.joined_peaks(time,
                                   data,
                                   refine=refine,
                                   refine_pktype=refine_pktype,
                                   Npk=Npk,
                                   polyorder=polyorder,
                                   splorder=splorder,
                                   minidx=minidx,
                                   peak_method=peak_method)
        joined = True
    else:
        pt, pv = peak.conservative_peaks(time,
                                         data,
                                         refine=refine,
                                         refine_pktype=refine_pktype,
                                         Npk=Npk,
                                         polyorder=polyorder,
                                         splorder=splorder,
                                         minidx=minidx,
                                         peak_method=peak_method)
        joined = False
    return pt, pv, joined
Exemple #3
0
def resonant_trajectory(t, x1, x2, t_left, t_right, Npts=10000, refinex1=False,
                        t_res=None): 
    if refinex1:
        pt, pv, p_ref, pv_unref = pk.conservative_peaks(t, x1, returnrefined=True) 
        x1spl = UnivariateSpline(t, p_ref, k=4, s=0)
    else:
        x1spl = UnivariateSpline(t, x1, k=4, s=0)
    x2spl = UnivariateSpline(t, x2, k=4, s=0)
    t_traj = np.linspace(t_left, t_right, Npts)
    x1_traj = x1spl(t_traj)
    x2_traj = x2spl(t_traj)
    return [x1_traj, x2_traj]
def even_sampled_omega(orbpath,
                       ptsperorbit=1000,
                       method="savgol",
                       return_cos=False):
    rraw = loadfile(orbpath)
    rmagraw = np.sqrt(rraw[:, 1]**2 + rraw[:, 2]**2 + rraw[:, 3]**2)
    pt, pv = peaks.conservative_peaks(rraw[:, 0], rmagraw, refine=False)
    norbits = len(pt)
    print "Norbits: ", norbits
    npts = norbits * ptsperorbit
    return even_sampled_omega_npts(orbpath,
                                   npts,
                                   method=method,
                                   return_cos=return_cos)
Exemple #5
0
def omega_theta(thtime, theta, pktime, pkdata, N=1, minidx=200, refine=True):
    #Njoined = N*2
    #Njoined = N
    pkt, pkv = peaks.conservative_peaks(pktime,
                                        pkdata,
                                        refine=True,
                                        minidx=minidx)

    chi = monotonic_acos(thtime, theta, tnew=pkt, unwrap=True)
    t0s, tfs, dT, tmids = window_ranges(pkt, N)

    dChi = np.array(chi[N:] - chi[:-N])
    omths = dChi / dT
    outarr = np.column_stack((tmids, omths))
    return outarr
Exemple #6
0
def orbits_on_resonance(t, r, t_left, t_right, refine=True):
    pt, pv = pk.conservative_peaks(t, r, refine=refine, minidx=200)
    argl = np.argmin(np.abs(pt - t_left))   
    argr = np.argmin(np.abs(pt - t_right))
    return argr-argl