def execute(self): kwargs = { "n_jobs": int(self.args["--threads"]), "processed": self.args["--processed"], "channel_attr": self.args["--channel"], "black_list": self.args["--black-list"], "subcluster": False, "select_singlets": self.args["--select-singlets"], "remap_singlets": self.args["--remap-singlets"], "subset_singlets": self.args["--subset-singlets"], "genome": self.args["--genome"], "focus": self.split_string(self.args["--focus"]), "append": self.args["--append"], "output_h5ad": self.args["--output-h5ad"], "output_loom": self.args["--output-loom"], "min_genes": self.convert_to_int(self.args["--min-genes"]), "max_genes": self.convert_to_int(self.args["--max-genes"]), "min_umis": self.convert_to_int(self.args["--min-umis"]), "max_umis": self.convert_to_int(self.args["--max-umis"]), "mito_prefix": self.args["--mito-prefix"], "percent_mito": self.convert_to_float(self.args["--percent-mito"]), "percent_cells": float(self.args["--gene-percent-cells"]), "output_filt": self.args["<output_name>"] if self.args["--output-filtration-results"] else None, "plot_filt": self.args["<output_name>"] if self.args["--plot-filtration-results"] else None, "plot_filt_figsize": self.args["--plot-filtration-figsize"], "min_genes_before_filt": int(self.args["--min-genes-before-filtration"]), "norm_count": float(self.args["--counts-per-cell-after"]), "select_hvf": not self.args["--no-select-hvf"], "hvf_flavor": self.args["--select-hvf-flavor"], "hvf_ngenes": int(self.args["--select-hvf-ngenes"]) if self.args["--select-hvf-ngenes"] != "None" else None, "plot_hvf": self.args["<output_name>"] if self.args["--plot-hvf"] else None, "batch_correction": self.args["--correct-batch-effect"], "correction_method": self.args["--correction-method"], "group_attribute": self.args["--batch-group-by"], "harmony_nclusters": self.convert_to_int(self.args["--harmony-nclusters"]), "random_state": int(self.args["--random-state"]), "temp_folder": self.args["--temp-folder"], "calc_sigscore": self.args["--calc-signature-scores"], "pca_n": int(self.args["--pca-n"]), "K": int(self.args["--knn-K"]), "full_speed": self.args["--knn-full-speed"], "kBET": self.args["--kBET"], "kBET_batch": self.args["--kBET-batch"], "kBET_alpha": float(self.args["--kBET-alpha"]), "kBET_K": int(self.args["--kBET-K"]), "diffmap": self.args["--diffmap"], "diffmap_ndc": int(self.args["--diffmap-ndc"]), "diffmap_maxt": int(self.args["--diffmap-maxt"]), "diffmap_solver": self.args["--diffmap-solver"], "pseudotime": self.split_string(self.args["--calculate-pseudotime"]), "louvain": self.args["--louvain"], "louvain_resolution": float(self.args["--louvain-resolution"]), "louvain_class_label": self.args["--louvain-class-label"], "leiden": self.args["--leiden"], "leiden_resolution": float(self.args["--leiden-resolution"]), "leiden_niter": int(self.args["--leiden-niter"]), "leiden_class_label": self.args["--leiden-class-label"], "spectral_louvain": self.args["--spectral-louvain"], "spectral_louvain_basis": self.args["--spectral-louvain-basis"], "spectral_louvain_nclusters": int(self.args["--spectral-louvain-nclusters"]), "spectral_louvain_nclusters2": int(self.args["--spectral-louvain-nclusters2"]), "spectral_louvain_ninit": int(self.args["--spectral-louvain-ninit"]), "spectral_louvain_resolution": float(self.args["--spectral-louvain-resolution"]), "spectral_louvain_class_label": self.args["--spectral-louvain-class-label"], "spectral_leiden": self.args["--spectral-leiden"], "spectral_leiden_basis": self.args["--spectral-leiden-basis"], "spectral_leiden_nclusters": int(self.args["--spectral-leiden-nclusters"]), "spectral_leiden_nclusters2": int(self.args["--spectral-leiden-nclusters2"]), "spectral_leiden_ninit": int(self.args["--spectral-leiden-ninit"]), "spectral_leiden_resolution": float(self.args["--spectral-leiden-resolution"]), "spectral_leiden_class_label": self.args["--spectral-leiden-class-label"], "tsne": self.args["--tsne"], "tsne_perplexity": float(self.args["--tsne-perplexity"]), "tsne_init": self.args["--tsne-initialization"], "umap": self.args["--umap"], "umap_K": int(self.args["--umap-K"]), "umap_min_dist": float(self.args["--umap-min-dist"]), "umap_spread": float(self.args["--umap-spread"]), "fle": self.args["--fle"], "fle_K": int(self.args["--fle-K"]), "fle_target_change_per_node": float(self.args["--fle-target-change-per-node"]), "fle_target_steps": int(self.args["--fle-target-steps"]), "fle_memory": int(self.args["--fle-memory"]), "net_ds_frac": float(self.args["--net-down-sample-fraction"]), "net_ds_K": int(self.args["--net-down-sample-K"]), "net_ds_alpha": float(self.args["--net-down-sample-alpha"]), "net_l2": float(self.args["--net-regressor-L2-penalty"]), "net_umap": self.args["--net-umap"], "net_umap_polish_learing_rate": float(self.args["--net-umap-polish-learning-rate"]), "net_umap_polish_nepochs": int(self.args["--net-umap-polish-nepochs"]), "net_umap_basis": self.args["--net-umap-out-basis"], "net_fle": self.args["--net-fle"], "net_fle_polish_target_steps": int(self.args["--net-fle-polish-target-steps"]), "net_fle_basis": self.args["--net-fle-out-basis"], "infer_doublets": self.args["--infer-doublets"], "expected_doublet_rate": self.convert_to_float(self.args["--expected-doublet-rate"]), "dbl_cluster_attr": self.args["--dbl-cluster-attr"], "citeseq": self.args["--citeseq"], "citeseq_umap": self.args["--citeseq-umap"], "citeseq_umap_exclude": self.split_string(self.args["--citeseq-umap-exclude"]), } import logging logger = logging.getLogger("pegasus") fh = logging.FileHandler("{}.log".format(self.args["<output_name>"])) fh.setLevel(logging.INFO) formatter = logging.Formatter( "%(asctime)s - %(name)s - %(levelname)s - %(message)s") fh.setFormatter(formatter) logger.addHandler(fh) run_pipeline(self.args["<input_file>"], self.args["<output_name>"], **kwargs)
def execute(self): kwargs = { "processed": True, "subcluster": True, "cite_seq": False, "select_singlets": False, "subset_selections": self.args["--subset-selection"], "n_jobs": int(self.args["--threads"]), "genome": None, "channel_attr": None, "black_list": None, "batch_correction": self.args["--correct-batch-effect"], "group_attribute": self.args["--batch-group-by"], "output_loom": self.args["--output-loom"], "select_hvf": not self.args["--no-select-hvf"], "hvf_flavor": self.args["--select-hvf-flavor"], "hvf_ngenes": int(self.args["--select-hvf-ngenes"]) if self.args["--select-hvf-ngenes"] != "None" else None, "plot_hvf": self.args["<output_name>"] if self.args["--plot-hvf"] else None, "random_state": int(self.args["--random-state"]), "temp_folder": self.args["--temp-folder"], "nPC": int(self.args["--nPC"]), "K": int(self.args["--knn-K"]), "full_speed": self.args["--knn-full-speed"], "kBET": self.args["--kBET"], "kBET_batch": self.args["--kBET-batch"], "kBET_alpha": float(self.args["--kBET-alpha"]), "kBET_K": int(self.args["--kBET-K"]), "diffmap": self.args["--diffmap"], "diffmap_ndc": int(self.args["--diffmap-ndc"]), "diffmap_maxt": int(self.args["--diffmap-maxt"]), "diffmap_solver": self.args["--diffmap-solver"], "diffmap_to_3d": self.args["--diffmap-to-3d"], "pseudotime": self.split_string(self.args["--calculate-pseudotime"]), "louvain": self.args["--louvain"], "louvain_resolution": float(self.args["--louvain-resolution"]), "louvain_class_label": self.args["--louvain-class-label"], "leiden": self.args["--leiden"], "leiden_resolution": float(self.args["--leiden-resolution"]), "leiden_niter": int(self.args["--leiden-niter"]), "leiden_class_label": self.args["--leiden-class-label"], "spectral_louvain": self.args["--spectral-louvain"], "spectral_louvain_basis": self.args["--spectral-louvain-basis"], "spectral_louvain_nclusters": int(self.args["--spectral-louvain-nclusters"]), "spectral_louvain_ninit": int(self.args["--spectral-louvain-ninit"]), "spectral_louvain_resolution": float(self.args["--spectral-louvain-resolution"]), "spectral_louvain_class_label": self.args["--spectral-louvain-class-label"], "spectral_leiden": self.args["--spectral-leiden"], "spectral_leiden_basis": self.args["--spectral-leiden-basis"], "spectral_leiden_nclusters": int(self.args["--spectral-leiden-nclusters"]), "spectral_leiden_ninit": int(self.args["--spectral-leiden-ninit"]), "spectral_leiden_resolution": float(self.args["--spectral-leiden-resolution"]), "spectral_leiden_class_label": self.args["--spectral-leiden-class-label"], "tsne": self.args["--tsne"], "fitsne": self.args["--fitsne"], "tsne_perplexity": float(self.args["--tsne-perplexity"]), "umap": self.args["--umap"], "umap_K": int(self.args["--umap-K"]), "umap_min_dist": float(self.args["--umap-min-dist"]), "umap_spread": float(self.args["--umap-spread"]), "fle": self.args["--fle"], "fle_K": int(self.args["--fle-K"]), "fle_target_change_per_node": float(self.args["--fle-target-change-per-node"]), "fle_target_steps": int(self.args["--fle-target-steps"]), "fle_memory": int(self.args["--fle-memory"]), "net_ds_frac": float(self.args["--net-down-sample-fraction"]), "net_ds_K": int(self.args["--net-down-sample-K"]), "net_ds_alpha": float(self.args["--net-down-sample-alpha"]), "net_l2": float(self.args["--net-regressor-L2-penalty"]), "net_tsne": self.args["--net-tsne"], "net_tsne_polish_learing_frac": float(self.args["--net-tsne-polish-learning-frac"]), "net_tsne_polish_niter": int(self.args["--net-tsne-polish-niter"]), "net_tsne_basis": self.args["--net-tsne-out-basis"], "net_umap": self.args["--net-umap"], "net_umap_polish_learing_rate": float(self.args["--net-umap-polish-learning-rate"]), "net_umap_polish_nepochs": int(self.args["--net-umap-polish-nepochs"]), "net_umap_basis": self.args["--net-umap-out-basis"], "net_fle": self.args["--net-fle"], "net_fle_polish_target_steps": int(self.args["--net-fle-polish-target-steps"]), "net_fle_basis": self.args["--net-fle-out-basis"], } import logging logger = logging.getLogger("pegasus") fh = logging.FileHandler("{}.log".format(self.args["<output_name>"])) fh.setLevel(logging.INFO) formatter = logging.Formatter( "%(asctime)s - %(name)s - %(levelname)s - %(message)s") fh.setFormatter(formatter) logger.addHandler(fh) run_pipeline(self.args["<input_file>"], self.args["<output_name>"], **kwargs)
def execute(self): kwargs = { "n_jobs": int(self.args["--threads"]), "processed": self.args["--processed"], "genome": self.args["--genome"], "channel_attr": self.args["--channel"], "black_list": self.args["--black-list"], "subcluster": False, "min_genes_on_raw": int(self.args["--min-genes-on-raw"]), "select_singlets": self.args["--select-singlets"], "cite_seq": self.args["--cite-seq"], "cite_seq_capping": float(self.args["--cite-seq-capping"]), "output_filt": self.args["<output_name>"] if self.args["--output-filtration-results"] else None, "plot_filt": self.args["<output_name>"] if self.args["--plot-filtration-results"] else None, "plot_filt_figsize": self.args["--plot-filtration-figsize"], "seurat_compatible": self.args["--output-seurat-compatible"], "output_loom": self.args["--output-loom"], "min_genes": int(self.args["--min-genes"]), "max_genes": int(self.args["--max-genes"]), "min_umis": int(self.args["--min-umis"]), "max_umis": int(self.args["--max-umis"]), "mito_prefix": self.args["--mito-prefix"], "percent_mito": float(self.args["--percent-mito"]), "percent_cells": float(self.args["--gene-percent-cells"]), "norm_count": float(self.args["--counts-per-cell-after"]), "select_hvf": not self.args["--no-select-hvf"], "hvf_flavor": self.args["--select-hvf-flavor"], "hvf_ngenes": int(self.args["--select-hvf-ngenes"]) if self.args["--select-hvf-ngenes"] != "None" else None, "plot_hvf": self.args["<output_name>"] if self.args["--plot-hvf"] else None, "batch_correction": self.args["--correct-batch-effect"], "group_attribute": self.args["--batch-group-by"], "random_state": int(self.args["--random-state"]), "temp_folder": self.args["--temp-folder"], "nPC": int(self.args["--nPC"]), "K": int(self.args["--knn-K"]), "full_speed": self.args["--knn-full-speed"], "kBET": self.args["--kBET"], "kBET_batch": self.args["--kBET-batch"], "kBET_alpha": float(self.args["--kBET-alpha"]), "kBET_K": int(self.args["--kBET-K"]), "diffmap": self.args["--diffmap"], "diffmap_ndc": int(self.args["--diffmap-ndc"]), "diffmap_maxt": int(self.args["--diffmap-maxt"]), "diffmap_solver": self.args["--diffmap-solver"], "diffmap_to_3d": self.args["--diffmap-to-3d"], "pseudotime": self.split_string(self.args["--calculate-pseudotime"]), "louvain": self.args["--louvain"], "louvain_resolution": float(self.args["--louvain-resolution"]), "louvain_class_label": self.args["--louvain-class-label"], "leiden": self.args["--leiden"], "leiden_resolution": float(self.args["--leiden-resolution"]), "leiden_niter": int(self.args["--leiden-niter"]), "leiden_class_label": self.args["--leiden-class-label"], "spectral_louvain": self.args["--spectral-louvain"], "spectral_louvain_basis": self.args["--spectral-louvain-basis"], "spectral_louvain_nclusters": int( self.args["--spectral-louvain-nclusters"] ), "spectral_louvain_nclusters2": int( self.args["--spectral-louvain-nclusters2"] ), "spectral_louvain_ninit": int(self.args["--spectral-louvain-ninit"]), "spectral_louvain_resolution": float( self.args["--spectral-louvain-resolution"] ), "spectral_louvain_class_label": self.args["--spectral-louvain-class-label"], "spectral_leiden": self.args["--spectral-leiden"], "spectral_leiden_basis": self.args["--spectral-leiden-basis"], "spectral_leiden_nclusters": int(self.args["--spectral-leiden-nclusters"]), "spectral_leiden_nclusters2": int(self.args["--spectral-leiden-nclusters2"]), "spectral_leiden_ninit": int(self.args["--spectral-leiden-ninit"]), "spectral_leiden_resolution": float( self.args["--spectral-leiden-resolution"] ), "spectral_leiden_class_label": self.args["--spectral-leiden-class-label"], "tsne": self.args["--tsne"], "fitsne": self.args["--fitsne"], "tsne_perplexity": float(self.args["--tsne-perplexity"]), "umap": self.args["--umap"], "umap_K": int(self.args["--umap-K"]), "umap_min_dist": float(self.args["--umap-min-dist"]), "umap_spread": float(self.args["--umap-spread"]), "fle": self.args["--fle"], "fle_K": int(self.args["--fle-K"]), "fle_target_change_per_node": float( self.args["--fle-target-change-per-node"] ), "fle_target_steps": int(self.args["--fle-target-steps"]), "fle_memory": int(self.args["--fle-memory"]), "net_ds_frac": float(self.args["--net-down-sample-fraction"]), "net_ds_K": int(self.args["--net-down-sample-K"]), "net_ds_alpha": float(self.args["--net-down-sample-alpha"]), "net_l2": float(self.args["--net-regressor-L2-penalty"]), "net_tsne": self.args["--net-tsne"], "net_tsne_polish_learing_frac": float( self.args["--net-tsne-polish-learning-frac"] ), "net_tsne_polish_niter": int(self.args["--net-tsne-polish-niter"]), "net_tsne_basis": self.args["--net-tsne-out-basis"], "net_umap": self.args["--net-umap"], "net_umap_polish_learing_rate": float( self.args["--net-umap-polish-learning-rate"] ), "net_umap_polish_nepochs": int(self.args["--net-umap-polish-nepochs"]), "net_umap_basis": self.args["--net-umap-out-basis"], "net_fle": self.args["--net-fle"], "net_fle_polish_target_steps": int( self.args["--net-fle-polish-target-steps"] ), "net_fle_basis": self.args["--net-fle-out-basis"], } run_pipeline(self.args["<input_file>"], self.args["<output_name>"], **kwargs)