def visc_heat(src, dst, key, par, gd, l1, l2, m1, m2, n1, n2, nghost): if key == "hvisc": th1 = 1./3 n1shift,n2shift,m1shift,m2shift,l1shift,l2shift=der_limits( n1,n2,m1,m2,l1,l2,nghost) uu = np.array([ src["data/ux"][n1shift:n2shift,m1shift:m2shift,l1shift:l2shift], src["data/uy"][n1shift:n2shift,m1shift:m2shift,l1shift:l2shift], src["data/uz"][n1shift:n2shift,m1shift:m2shift,l1shift:l2shift] ]) tmp0 = grad(uu[0],grid.dx,grid.dy,grid.dz,x=grid.x[l1shift:l2shift],y=grid.y[m1shift:m2shift],coordinate_system=param.coord_system) tmp1 = grad(uu[1],grid.dx,grid.dy,grid.dz,x=grid.x[l1shift:l2shift],y=grid.y[m1shift:m2shift],coordinate_system=param.coord_system) tmp2 = grad(uu[2],grid.dx,grid.dy,grid.dz,x=grid.x[l1shift:l2shift],y=grid.y[m1shift:m2shift],coordinate_system=param.coord_system) var = tmp0[1]**2 var += tmp0[2]**2 var += tmp1[2]**2 if "tt" in dst["data"].keys(): tt = dst["tt"][n1shift:n2shift,m1shift:m2shift,l1shift:l2shift] else: calc_derived_data(src["data"], dst["data"], "tt", par, gd, l1, l2, m1, m2, n1, n2, nghost) tt = dst["data/tt"][n1shift:n2shift,m1shift:m2shift,l1shift:l2shift] var *= 2*par.nu*var/tt n1r,m1r,l1r = under_limits(n1,m1,l1,n1shift,m1shift,l1shift,nghost) return var[n1r:n2-n1+n1r,m1r:m2-m1+m1r,l1r:l2-l1+l1r]
def heatcond(src, dst, key, par, gd, l1, l2, m1, m2, n1, n2, nghost): if key == "hcond": n1shift,n2shift,m1shift,m2shift,l1shift,l2shift=der_limits( n1,n2,m1,m2,l1,l2,nghost) if "tt" in dst["data"].keys(): tt = dst["data/tt"][n1shift,n2shift,m1shift,m2shift,l1shift,l2shift] else: calc_derived_data(src["data"], dst["data"], "tt", par, gd, l1, l2, m1, m2, n1, n2, nghost) tt = dst["data/tt"][n1shift,n2shift,m1shift,m2shift,l1shift,l2shift] lntt = np.log(dst["data/tt"][n1shift,n2shift,m1shift,m2shift,l1shift,l2shift]) gradlnT = grad(lntt,grid.dx,grid.dy,grid.dz,x=grid.x[l1shift:l2shift],y=grid.y[m1shift:m2shift],coordinate_system=param.coord_system) del2T = del2(tt,grid.dx,grid.dy,grid.dz,x=grid.x[l1shift:l2shift],y=grid.y[m1shift:m2shift],coordinate_system=param.coord_system) if "rho" in src["data"].keys(): lnrho = np.log(src["rho"][n1shift,n2shift,m1shift,m2shift,l1shift,l2shift]) gradlnrho = grad(lnrho,grid.dx,grid.dy,grid.dz,x=grid.x[l1shift:l2shift],y=grid.y[m1shift:m2shift],coordinate_system=param.coord_system) lrho = True elif "lnrho" in src["data"].keys(): lnrho = src["lnrho"][n1shift,n2shift,m1shift,m2shift,l1shift,l2shift] gradlnrho = grad(lnrho,grid.dx,grid.dy,grid.dz,x=grid.x[l1shift:l2shift],y=grid.y[m1shift:m2shift],coordinate_system=param.coord_system) lrho = True else: lrho = False var = par.cp*par.chi*del2T/tt if lrho: var += par.cp*par.chi*dot(gradlnrho,gradlnT) n1r,m1r,l1r = under_limits(n1,m1,l1,n1shift,m1shift,l1shift,nghost) return var[n1r:n2-n1+n1r,m1r:m2-m1+m1r,l1r:l2-l1+l1r]
def rostrain(src, dst, key, par, gd, l1, l2, m1, m2, n1, n2, nghost): if key == "fvisc": n1shift,n2shift,m1shift,m2shift,l1shift,l2shift=der_limits( n1,n2,m1,m2,l1,l2,nghost) if par.nu > 0: uu = np.array([ src["data/ux"][n1shift:n2shift,m1shift:m2shift,l1shift:l2shift], src["data/uy"][n1shift:n2shift,m1shift:m2shift,l1shift:l2shift], src["data/uz"][n1shift:n2shift,m1shift:m2shift,l1shift:l2shift] ]) #viscous forces th2 = 2./3 th1 = 1./3 fvisc = np.zeros_like(uu) del2u = np.zeros_like(uu) for j in range(0,3): del2u[j] = del2(uu[j],gd.dx,gd.dy,gd.dz,x=gd.x[l1shift:l2shift],y=gd.y[m1shift:m2shift],coordinate_system=par.coord_system) fvisc += param.nu*del2u del(del2u) divu = div(uu,grid.dx,grid.dy,grid.dz,x=grid.x[l1shift:l2shift],y=grid.y[m1shift:m2shift],coordinate_system=param.coord_system) graddivu = grad(divu,grid.dx,grid.dy,grid.dz,x=grid.x[l1shift:l2shift],y=grid.y[m1shift:m2shift],coordinate_system=param.coord_system) fvisc += th1*par.nu*graddivu del(graddivu) if "rho" in src["data"].keys(): lnrho = np.log(src["data/rho"][n1shift:n2shift,m1shift:m2shift,l1shift:l2shift]) lrho = True elif "lnrho" in src["data"].keys(): lnrho = src["data/lnrho"][n1shift:n2shift,m1shift:m2shift,l1shift:l2shift] lrho = True else: lrho = False if lrho: tmp0 = grad(uu[0],grid.dx,grid.dy,grid.dz,x=grid.x[l1shift:l2shift],y=grid.y[m1shift:m2shift],coordinate_system=param.coord_system) tmp1 = grad(uu[1],grid.dx,grid.dy,grid.dz,x=grid.x[l1shift:l2shift],y=grid.y[m1shift:m2shift],coordinate_system=param.coord_system) tmp2 = grad(uu[2],grid.dx,grid.dy,grid.dz,x=grid.x[l1shift:l2shift],y=grid.y[m1shift:m2shift],coordinate_system=param.coord_system) gradlnrho = grad(lnrho,grid.dx,grid.dy,grid.dz,x=grid.x[l1shift:l2shift],y=grid.y[m1shift:m2shift],coordinate_system=param.coord_system) Sglnrho = np.zeros_like(uu) Sglnrho[0] = dot(tmp0,gradlnrho) +\ (tmp0[0]+tmp1[0]+tmp2[0]-th2*divu)*gradlnrho[0] Sglnrho[1] = dot(tmp1,gradlnrho) +\ (tmp0[1]+tmp1[1]+tmp2[1]-th2*divu)*gradlnrho[1] Sglnrho[2] = dot(tmp2,gradlnrho) +\ (tmp0[2]+tmp1[2]+tmp2[2]-th2*divu)*gradlnrho[2] fvisc += par.nu*Sglnrho del(gradlnrho,Sglnrho) del(divu) n1r,m1r,l1r = under_limits(n1,m1,l1,n1shift,m1shift,l1shift,nghost) return fvisc[:,n1r:n2-n1+n1r,m1r:m2-m1+m1r,l1r:l2-l1+l1r]
def advec_heat(src, dst, key, par, gd, l1, l2, m1, m2, n1, n2, nghost): if key == "hadvec": n1shift,n2shift,m1shift,m2shift,l1shift,l2shift=der_limits( n1,n2,m1,m2,l1,l2,nghost) uu = np.array([ src["data/ux"][n1shift:n2shift,m1shift:m2shift,l1shift:l2shift], src["data/uy"][n1shift:n2shift,m1shift:m2shift,l1shift:l2shift], src["data/uz"][n1shift:n2shift,m1shift:m2shift,l1shift:l2shift] ]) if "ss" in dst["data"].keys(): ss = src["ss"][n1shift:n2shift,m1shift:m2shift,l1shift:l2shift] sgrad = grad(ss,grid.dx,grid.dy,grid.dz,x=grid.x[l1shift:l2shift],y=grid.y[m1shift:m2shift],coordinate_system=param.coord_system) if "tt" in dst["data"].keys(): tt = dst["tt"][n1shift:n2shift,m1shift:m2shift,l1shift:l2shift] else: calc_derived_data(src["data"], dst["data"], "tt", par, gd, l1, l2, m1, m2, n1, n2, nghost) tt = dst["data/tt"][n1shift:n2shift,m1shift:m2shift,l1shift:l2shift] if "rho" in dst["data"].keys(): rho = src["data/rho"][n1shift:n2shift,m1shift:m2shift,l1shift:l2shift] elif "lnrho" in dst["data"].keys(): rho = np.exp(src["data/lnrho"][n1shift:n2shift,m1shift:m2shift,l1shift:l2shift]) else: rho=1 advec = -dot(uu,sgrad)/(rho*tt) n1r,m1r,l1r = under_limits(n1,m1,l1,n1shift,m1shift,l1shift,nghost) return advec[n1r:n2-n1+n1r,m1r:m2-m1+m1r,l1r:l2-l1+l1r]
def advec_force(src, dst, key, par, gd, l1, l2, m1, m2, n1, n2, nghost): if key == "uadvec": n1shift,n2shift,m1shift,m2shift,l1shift,l2shift=der_limits( n1,n2,m1,m2,l1,l2,nghost) uu = np.array([ src["data/ux"][n1shift:n2shift,m1shift:m2shift,l1shift:l2shift], src["data/uy"][n1shift:n2shift,m1shift:m2shift,l1shift:l2shift], src["data/uz"][n1shift:n2shift,m1shift:m2shift,l1shift:l2shift] ]) tmp0 = grad(uu[0],grid.dx,grid.dy,grid.dz,x=grid.x[l1shift:l2shift],y=grid.y[m1shift:m2shift],coordinate_system=param.coord_system) tmp1 = grad(uu[1],grid.dx,grid.dy,grid.dz,x=grid.x[l1shift:l2shift],y=grid.y[m1shift:m2shift],coordinate_system=param.coord_system) tmp2 = grad(uu[2],grid.dx,grid.dy,grid.dz,x=grid.x[l1shift:l2shift],y=grid.y[m1shift:m2shift],coordinate_system=param.coord_system) advec = np.zeros_like(uu) advec[0] = -dot(uu,tmp0) advec[1] = -dot(uu,tmp1) advec[2] = -dot(uu,tmp2) del(tmp0,tmp1,tmp2) n1r,m1r,l1r = under_limits(n1,m1,l1,n1shift,m1shift,l1shift,nghost) return advec[:,n1r:n2-n1+n1r,m1r:m2-m1+m1r,l1r:l2-l1+l1r]
def gradp(src, dst, key, par, gd, l1, l2, m1, m2, n1, n2, nghost): if key == "gradp": n1shift,n2shift,m1shift,m2shift,l1shift,l2shift=der_limits( n1,n2,m1,m2,l1,l2,nghost) if "pp" in dst["data"].keys(): pp = dst["data/pp"][n1shift:n2shift,m1shift:m2shift,l1shift:l2shift] else: calc_derived_data(src["data"], dst["data"], "pp", par, gd, l1, l2, m1, m2, n1, n2, nghost) pp = dst["data/pp"][n1shift:n2shift,m1shift:m2shift,l1shift:l2shift] var = -grad(pp, gd.dx, gd.dy, gd.dz,x=gd.x[l1shift:l2shift],y=gd.y[m1shift:m2shift],coordinate_system=par.coord_system) if "rho" in src["data"].keys(): rho = dst["data/rho"][n1shift:n2shift,m1shift:m2shift,l1shift:l2shift] elif "lnrho" in src["data"].keys(): rho = np.exp(dst["data/lnrho"][n1shift:n2shift,m1shift:m2shift,l1shift:l2shift]) else: rho = 1. var /= rho n1r,m1r,l1r = under_limits(n1,m1,l1,n1shift,m1shift,l1shift,nghost) return var[:,n1r:n2-n1+n1r,m1r:m2-m1+m1r,l1r:l2-l1+l1r]
def fluid_reynolds(uu, param, grid, lnrho=list(), shock=list(), nghost=3, lmix=True, quiet=True): """ Computes the fluid Reynolds number from the advective and effective viscous expressions in the momentum equation. call signature: fluid_reynolds(uu, ivisc, grid, rho=None, shock=None, nghost=3) Keyword arguments: *uu*: The velocity field [3,mz,my,mx] from the simulation data *param*: The Param simulation object with viscosity data information *grid*: The Grid simulation object *lnrho*: The log density field if it is non-uniform *shock*: The shock variable if shock viscosity is applied *nghost*: The number of ghost zones appropriate to the order of accuracy *lmix*: Option not to include hyper values when Laplacian values present """ #viscous forces th2 = 2. / 3 th1 = 1. / 3 fvisc = np.zeros_like(uu) #molecular viscosity contribution ldel2, lshock, lhyper3 = False, False, False for ivisc in param.ivisc: if not 'shock' in ivisc and not 'hyper' in ivisc\ and not '\n' in ivisc: ldel2 = True if 'shock' in ivisc: lshock = True if 'hyper3' in ivisc: lhyper3 = True if ldel2: if lhyper3: lhyper3 = lhyper3 == lmix del2u = np.zeros_like(uu) for j in range(0, 3): del2u[j] = del2(uu[j], grid.dx, grid.dy, grid.dz, x=grid.x, y=grid.y, coordinate_system=param.coord_system) del2u[j, :nghost, nghost:-nghost, nghost:-nghost] = del2u[j, -2 * nghost:-nghost, nghost:-nghost, nghost:-nghost] del2u[j, -nghost:, nghost:-nghost, nghost:-nghost] = del2u[j, nghost:2 * nghost, nghost:-nghost, nghost:-nghost] del2u[j, nghost:-nghost, :nghost, nghost:-nghost] = del2u[j, nghost:-nghost, -2 * nghost:-nghost, nghost:-nghost] del2u[j, nghost:-nghost, -nghost:, nghost:-nghost] = del2u[j, nghost:-nghost, nghost:2 * nghost, nghost:-nghost] del2u[j, nghost:-nghost, nghost:-nghost, :nghost] = del2u[j, nghost:-nghost, nghost:-nghost, -2 * nghost:-nghost] del2u[j, nghost:-nghost, nghost:-nghost, -nghost:] = del2u[j, nghost:-nghost, nghost:-nghost, nghost:2 * nghost] for ivisc in param.ivisc: ivisc = str.strip(ivisc, '\n') if 'nu-const' not in ivisc and 'shock' not in ivisc\ and 'hyper' not in ivisc and len(ivisc) > 0: print( 'fluid_reynolds WARNING: ' + ivisc + ' not implemented\n' + 'terms may be missing from the standard rate of strain tensor' ) fvisc = fvisc + param.nu * del2u del (del2u) tmp0 = grad(uu[0], grid.dx, grid.dy, grid.dz, x=grid.x, y=grid.y, coordinate_system=param.coord_system) for j in range(0, 3): tmp0[j, :nghost, nghost:-nghost, nghost:-nghost] = tmp0[j, -2 * nghost:-nghost, nghost:-nghost, nghost:-nghost] tmp0[j, -nghost:, nghost:-nghost, nghost:-nghost] = tmp0[j, nghost:2 * nghost, nghost:-nghost, nghost:-nghost] tmp0[j, nghost:-nghost, :nghost, nghost:-nghost] = tmp0[j, nghost:-nghost, -2 * nghost:-nghost, nghost:-nghost] tmp0[j, nghost:-nghost, -nghost:, nghost:-nghost] = tmp0[j, nghost:-nghost, nghost:2 * nghost, nghost:-nghost] tmp0[j, nghost:-nghost, nghost:-nghost, :nghost] = tmp0[j, nghost:-nghost, nghost:-nghost, -2 * nghost:-nghost] tmp0[j, nghost:-nghost, nghost:-nghost, -nghost:] = tmp0[j, nghost:-nghost, nghost:-nghost, nghost:2 * nghost] tmp1 = grad(uu[1], grid.dx, grid.dy, grid.dz, x=grid.x, y=grid.y, coordinate_system=param.coord_system) for j in range(0, 3): tmp1[j, :nghost, nghost:-nghost, nghost:-nghost] = tmp1[j, -2 * nghost:-nghost, nghost:-nghost, nghost:-nghost] tmp1[j, -nghost:, nghost:-nghost, nghost:-nghost] = tmp1[j, nghost:2 * nghost, nghost:-nghost, nghost:-nghost] tmp1[j, nghost:-nghost, :nghost, nghost:-nghost] = tmp1[j, nghost:-nghost, -2 * nghost:-nghost, nghost:-nghost] tmp1[j, nghost:-nghost, -nghost:, nghost:-nghost] = tmp1[j, nghost:-nghost, nghost:2 * nghost, nghost:-nghost] tmp1[j, nghost:-nghost, nghost:-nghost, :nghost] = tmp1[j, nghost:-nghost, nghost:-nghost, -2 * nghost:-nghost] tmp1[j, nghost:-nghost, nghost:-nghost, -nghost:] = tmp1[j, nghost:-nghost, nghost:-nghost, nghost:2 * nghost] tmp2 = grad(uu[2], grid.dx, grid.dy, grid.dz, x=grid.x, y=grid.y, coordinate_system=param.coord_system) for j in range(0, 3): tmp2[j, :nghost, nghost:-nghost, nghost:-nghost] = tmp2[j, -2 * nghost:-nghost, nghost:-nghost, nghost:-nghost] tmp2[j, -nghost:, nghost:-nghost, nghost:-nghost] = tmp2[j, nghost:2 * nghost, nghost:-nghost, nghost:-nghost] tmp2[j, nghost:-nghost, :nghost, nghost:-nghost] = tmp2[j, nghost:-nghost, -2 * nghost:-nghost, nghost:-nghost] tmp2[j, nghost:-nghost, -nghost:, nghost:-nghost] = tmp2[j, nghost:-nghost, nghost:2 * nghost, nghost:-nghost] tmp2[j, nghost:-nghost, nghost:-nghost, :nghost] = tmp2[j, nghost:-nghost, nghost:-nghost, -2 * nghost:-nghost] tmp2[j, nghost:-nghost, nghost:-nghost, -nghost:] = tmp2[j, nghost:-nghost, nghost:-nghost, nghost:2 * nghost] #effect of compressibility if len(lnrho) > 0: divu = div(uu, grid.dx, grid.dy, grid.dz, x=grid.x, y=grid.y, coordinate_system=param.coord_system) divu[:nghost, nghost:-nghost, nghost:-nghost] = divu[-2 * nghost:-nghost, nghost:-nghost, nghost:-nghost] divu[-nghost:, nghost:-nghost, nghost:-nghost] = divu[nghost:2 * nghost, nghost:-nghost, nghost:-nghost] divu[nghost:-nghost, :nghost, nghost:-nghost] = divu[nghost:-nghost, -2 * nghost:-nghost, nghost:-nghost] divu[nghost:-nghost, -nghost:, nghost:-nghost] = divu[nghost:-nghost, nghost:2 * nghost, nghost:-nghost] divu[nghost:-nghost, nghost:-nghost, :nghost] = divu[nghost:-nghost, nghost:-nghost, -2 * nghost:-nghost] divu[nghost:-nghost, nghost:-nghost, -nghost:] = divu[nghost:-nghost, nghost:-nghost, nghost:2 * nghost] gradlnrho = grad(lnrho, grid.dx, grid.dy, grid.dz, x=grid.x, y=grid.y, coordinate_system=param.coord_system) for j in range(0, 3): gradlnrho[j, :nghost, nghost:-nghost, nghost:-nghost] = gradlnrho[j, -2 * nghost:-nghost, nghost:-nghost, nghost:-nghost] gradlnrho[j, -nghost:, nghost:-nghost, nghost:-nghost] = gradlnrho[j, nghost:2 * nghost, nghost:-nghost, nghost:-nghost] gradlnrho[j, nghost:-nghost, :nghost, nghost:-nghost] = gradlnrho[j, nghost:-nghost, -2 * nghost:-nghost, nghost:-nghost] gradlnrho[j, nghost:-nghost, -nghost:, nghost:-nghost] = gradlnrho[j, nghost:-nghost, nghost:2 * nghost, nghost:-nghost] gradlnrho[j, nghost:-nghost, nghost:-nghost, :nghost] = gradlnrho[j, nghost:-nghost, nghost:-nghost, -2 * nghost:-nghost] gradlnrho[j, nghost:-nghost, nghost:-nghost, -nghost:] = gradlnrho[j, nghost:-nghost, nghost:-nghost, nghost:2 * nghost] Sglnrho = np.zeros_like(uu) Sglnrho[0] = dot(tmp0,gradlnrho) +\ (tmp0[0]+tmp1[0]+tmp2[0]-th2*divu)*gradlnrho[0] Sglnrho[1] = dot(tmp1,gradlnrho) +\ (tmp0[1]+tmp1[1]+tmp2[1]-th2*divu)*gradlnrho[1] Sglnrho[2] = dot(tmp2,gradlnrho) +\ (tmp0[2]+tmp1[2]+tmp2[2]-th2*divu)*gradlnrho[2] graddivu = grad(divu, grid.dx, grid.dy, grid.dz, x=grid.x, y=grid.y, coordinate_system=param.coord_system) for j in range(0, 3): graddivu[j, :nghost, nghost:-nghost, nghost:-nghost] = graddivu[j, -2 * nghost:-nghost, nghost:-nghost, nghost:-nghost] graddivu[j, -nghost:, nghost:-nghost, nghost:-nghost] = graddivu[j, nghost:2 * nghost, nghost:-nghost, nghost:-nghost] graddivu[j, nghost:-nghost, :nghost, nghost:-nghost] = graddivu[j, nghost:-nghost, -2 * nghost:-nghost, nghost:-nghost] graddivu[j, nghost:-nghost, -nghost:, nghost:-nghost] = graddivu[j, nghost:-nghost, nghost:2 * nghost, nghost:-nghost] graddivu[j, nghost:-nghost, nghost:-nghost, :nghost] = graddivu[j, nghost:-nghost, nghost:-nghost, -2 * nghost:-nghost] graddivu[j, nghost:-nghost, nghost:-nghost, -nghost:] = graddivu[j, nghost:-nghost, nghost:-nghost, nghost:2 * nghost] fvisc = fvisc + param.nu * (th1 * graddivu + Sglnrho) del (Sglnrho) elif param.ldensity: print('fluid_reynolds WARNING: no lnrho provided\n' + 'rate of strain tensor likely incomplete') #shock contribution if lshock: if len(shock) == 0: print('fluid_reynolds WARNING: no shock provided\n' + 'rate of strain tensor likely incomplete') else: shock[:nghost, nghost:-nghost, nghost:-nghost] = shock[-2 * nghost:-nghost, nghost:-nghost, nghost:-nghost] shock[-nghost:, nghost:-nghost, nghost:-nghost] = shock[nghost:2 * nghost, nghost:-nghost, nghost:-nghost] shock[nghost:-nghost, :nghost, nghost:-nghost] = shock[nghost:-nghost, -2 * nghost:-nghost, nghost:-nghost] shock[nghost:-nghost, -nghost:, nghost:-nghost] = shock[nghost:-nghost, nghost:2 * nghost, nghost:-nghost] shock[nghost:-nghost, nghost:-nghost, :nghost] = shock[nghost:-nghost, nghost:-nghost, -2 * nghost:-nghost] shock[nghost:-nghost, nghost:-nghost, -nghost:] = shock[nghost:-nghost, nghost:-nghost, nghost:2 * nghost] divugradlnrho = np.zeros_like(uu) gradshock = grad(shock, grid.dx, grid.dy, grid.dz, x=grid.x, y=grid.y, coordinate_system=param.coord_system) for j in range(0, 3): gradshock[j, :nghost, nghost:-nghost, nghost:-nghost] = gradshock[j, -2 * nghost:-nghost, nghost:-nghost, nghost:-nghost] gradshock[j, -nghost:, nghost:-nghost, nghost:-nghost] = gradshock[j, nghost:2 * nghost, nghost:-nghost, nghost:-nghost] gradshock[j, nghost:-nghost, :nghost, nghost:-nghost] = gradshock[j, nghost:-nghost, -2 * nghost:-nghost, nghost:-nghost] gradshock[j, nghost:-nghost, -nghost:, nghost:-nghost] = gradshock[j, nghost:-nghost, nghost:2 * nghost, nghost:-nghost] gradshock[j, nghost:-nghost, nghost:-nghost, :nghost] = gradshock[j, nghost:-nghost, nghost:-nghost, -2 * nghost:-nghost] gradshock[j, nghost:-nghost, nghost:-nghost, -nghost:] = gradshock[j, nghost:-nghost, nghost:-nghost, nghost:2 * nghost] for j in range(0, 3): divugradlnrho[j] = param.nu_shock*divu*gradshock[j] +\ param.nu_shock*shock*(divu*gradlnrho[j] + graddivu[j]) del (divu, gradshock, gradlnrho, graddivu) fvisc = fvisc + divugradlnrho del (divugradlnrho) if lhyper3: #deluij5 = np.zeros_like([uu,uu,uu]) #uij5glnrho to be included del6u = np.zeros_like(uu) for j in range(0, 3): del6u[j] = del6(uu[j], grid.dx, grid.dy, grid.dz) del6u[j, :nghost, nghost:-nghost, nghost:-nghost] = del6u[j, -2 * nghost:-nghost, nghost:-nghost, nghost:-nghost] del6u[j, -nghost:, nghost:-nghost, nghost:-nghost] = del6u[j, nghost:2 * nghost, nghost:-nghost, nghost:-nghost] del6u[j, nghost:-nghost, :nghost, nghost:-nghost] = del6u[j, nghost:-nghost, -2 * nghost:-nghost, nghost:-nghost] del6u[j, nghost:-nghost, -nghost:, nghost:-nghost] = del6u[j, nghost:-nghost, nghost:2 * nghost, nghost:-nghost] del6u[j, nghost:-nghost, nghost:-nghost, :nghost] = del6u[j, nghost:-nghost, nghost:-nghost, -2 * nghost:-nghost] del6u[j, nghost:-nghost, nghost:-nghost, -nghost:] = del6u[j, nghost:-nghost, nghost:-nghost, nghost:2 * nghost] #del6 for non-cartesian tba #del6u[j] = del6(uu[j],grid.dx,grid.dy,grid.dz,x=grid.x,y=grid.y, # coordinate_system=param.coord_system) fvisc = fvisc + param.nu_hyper3 * del6u del (del6u) fvisc2 = np.sqrt(dot2(fvisc)) #advective forces advec = np.zeros_like(uu) advec[0] = dot(uu, tmp0) advec[1] = dot(uu, tmp1) advec[0] = dot(uu, tmp2) del (tmp0, tmp1, tmp2) advec2 = np.sqrt(dot2(advec)) del (advec) #avoid division by zero if fvisc2.max() > 0: fvisc2[np.where(fvisc2 == 0)] = fvisc2[np.where(fvisc2 > 0)].min() Re = advec2 / fvisc2 #set minimum floor to exclude zero-valued Re Re[np.where(Re == 0)] = Re[np.where(Re > 0)].min() else: Re = advec2 print('Re undefined') return Re