def cost(x): tape.set_parameters(x, trainable_only=False) tapes, fn = qml.transforms.hamiltonian_expand(tape) res = [t.execute(dev) for t in tapes] return fn(res)
def cost(x): tape.set_parameters(x, trainable_only=False) tapes, fn = qml.transforms.hamiltonian_expand(tape) res = qml.execute(tapes, dev, qml.gradients.param_shift) return fn(res)