def _create_output_layer(self):
     output_layer = []
     for i in range(0, self.number_of_outputs):
         perceptron = Perceptron(
             layer=len(self.layers),
             activation_function=self.activation_function)
         output_layer.append(perceptron)
         self._connect_neuron(perceptron)
     return output_layer
Exemple #2
0
def train_perceptron():
    network = Perceptron()
    input_count = len(dataset[0].inputs)
    print('----------------------------')
    print('Generating layers')
    for _ in range(input_count):
        network.s_layer.add_neuron(None, lambda value: value)
    print('S-layer generated')

    a_neurons_count = 2 ** input_count - 1
    for position in range(a_neurons_count):
        neuron = ANeuron(None, lambda value: int(value >= 0))
        # инициализация весов нейронов А слоя
        neuron.input_weights = [
            random.choice([-1, 0, 1]) for i in range(input_count)
        ]
        neuron.calculate_bias()
        network.a_layer.neurons.append(neuron)
    print('A-layer generated')

    for _ in range(NUMBER_COUNT):
        network.r_layer.add_neuron(a_neurons_count, lambda: 0, lambda value: 1 if value >=0 else -1, 0.01, 0)
    print('R-layer generated')

    network.train(dataset)
    network.optimize(dataset)
    return network
Exemple #3
0
    def test_predict(self):
        p = Perceptron()
        p.weights = [1, 2]

        self.assertEqual(p.predict([1, 2]), 1)

        p.weights = [-1, -2]

        self.assertEqual(p.predict([1, 2]), 0)
from perceptron.perceptron import Perceptron
import numpy as np

X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
y = np.array([[0], [1], [1], [1]])

print("[INFO] training perceptron...")

p = Perceptron(X.shape[1], alpha=0.1)
p.fit(X, y, epochs=20)
print("[INFO[ testing perceptron...")

for (x, target) in zip(X, y):
    pred = p.predict(x)
    print("[INFO] data = {}. ground truth={}, pred = {}".format(
        x, target[0], pred))
Exemple #5
0
 def __init__(self, input_num):
     '''初始化线性单元,设置输入参数的个数'''
     Perceptron.__init__(self, input_num, f)
from matplotlib import pyplot as plt
from sklearn.model_selection import train_test_split

from perceptron.perceptron import Perceptron
from utils.abalone_data import get_abalone

x, y = get_abalone()

print(x.shape)
print(y.shape)

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.20)

model = Perceptron(input_shape=[1, 9])

model.train(x_train, y_train, 0.0005, 100)

plt.plot(model.historical_error)
plt.show()
Exemple #7
0
 def setUp(self):
     self.perceptron = Perceptron()
Exemple #8
0
class Parser():
    """A transition-based dependency parser.

    This parser implements the arc-standard algorithm for dependency
    parsing. When being presented with an input sentence, it first
    tags the sentence for parts of speech, and then uses a multi-class
    perceptron classifier to predict a sequence of *moves*
    (transitions) that construct a dependency tree for the input
    sentence. Moves are encoded as integers as follows:

    SHIFT = 0, LEFT-ARC = 1, RIGHT-ARC = 2, SWAP = 3

    At any given point in the predicted sequence, the state of the
    parser can be specified by: a buffer containing the words in the
    input sentence that the parser has not yet started to process; a
    stack holding the indices of those words that are currently being
    processed; and a partial dependency tree, represented as a list of
    indices such that `tree[i]` gives the index of the head (parent
    node) of the word at position `i`, or 0 in case the corresponding
    word has not yet been assigned a head.

    Attributes:
        tagger: A part-of-speech tagger.
        classifier: A multi-class perceptron classifier used to
            predict the next move of the parser.
    """
    def __init__(self, tagger):
        """Initializes a new parser."""
        self.tagger = tagger
        self.classifier = Perceptron()

    def initial_config(self, words):
        """Initializes the config for the parser
        
        Args:
            words: the words of a sentence
            
        Returns:
            a initial parser config
        """
        config = {}
        config['score'] = 0
        config['pred_tree'] = [0] * len(words)
        config['stack'] = []
        config['buffer'] = list(range(len(words)))
        config['next_move'] = 0
        config['is_gold'] = True
        return config

    def predict(self, feat, candidates):
        """Calls the predict function of the classifier and applies the softmax
            function on the scores
        
        Args:
            feat: a feature vector
            candidates: the possible moves
        
        Returns:
            the possible moves with their respective scores
        """
        _, scores = self.classifier.predict(feat, candidates)
        if scores:
            # apply softmax on the scores
            scores_lst = [(k, v) for k, v in scores.items()]
            softmax_scores = softmax(list(zip(*scores_lst))[1])
            scores = dict(list(zip(list(zip(*scores_lst))[0], softmax_scores)))
        return scores

    def update_and_reset_config(self, config, feat, gold_move):
        """This functions is called when the gold_tree falls of the beam. It
        updates the classifier and resets the parser config such that only the
        gold configuration is in the beam.
        
        Args:
            config: the parser gold config
            feat: a featire vector
            gold_move: the correct move
            
        Returns:
            the new config
        """
        config['next_move'] = gold_move
        self.classifier.update(feat, gold_move)
        return [config]

    def parse(self, words, gold_tree=None, beam_size=10):
        """Parses a sentence and also updates the classifier 
        if a gold tree was passed to the function

        Args:
            words: The input sentence, a list of words.
            gold_tree: if a gold_tree is passed, the classifier is trained
            beam_size: the width of the beam, when using beam search

        Returns:
            A pair consisting of the predicted tags and the predicted
            dependency tree for the input sentence.
        """
        if gold_tree:
            word_order = self.get_word_order(gold_tree)
        tags = self.tagger.tag(words)
        possible_configs = [self.initial_config(words)]
        while any(config['next_move'] != None for config in possible_configs):
            old_possible_configs = possible_configs
            possible_configs = []
            for config in old_possible_configs:
                config = self.move(config)
                candidates = self.valid_moves(config)
                if candidates:
                    feat = self.features(words, tags, config)
                    scores = self.predict(feat, candidates)
                    if gold_tree:
                        gold_move = self.gold_move(config, gold_tree, \
                                                    word_order)
                        if config['is_gold'] and gold_move not in scores:
                            possible_configs = self.update_and_reset_config( \
                                                        config, feat, gold_move)
                            break
                    # add new configs for the possible moves
                    for curr_move, curr_score in scores.items():
                        # create a copy of the config and append it to the list
                        new_config = deepcopy(config)
                        if curr_score > 0:
                            new_config['score'] += log(curr_score)
                        else:
                            new_config['score'] += float("-inf")
                        new_config['next_move'] = curr_move
                        if gold_tree and gold_move != curr_move:
                            new_config['is_gold'] = False
                        possible_configs.append(new_config)
                else:
                    config['next_move'] = None
                    possible_configs.append(config)
            # delete the configs with the lowest scores
            while len(possible_configs) > beam_size:
                worst_conf_ind, worst_conf = \
                    min(enumerate(possible_configs),
                        key = lambda t: t[1]['score'])
                if gold_tree and worst_conf['is_gold'] == True:
                    feat = self.features(words, tags, worst_conf)
                    possible_configs = self.update_and_reset_config( \
                                    worst_conf, feat, worst_conf['next_move'])
                else:
                    del possible_configs[worst_conf_ind]
        # return best tree
        best_config = max(possible_configs, key=lambda t: t['score'])
        return tags, best_config['pred_tree']

    def valid_moves(self, config):
        """Returns the valid moves for the specified parser
        configuration.

        Args:
            config: the current parser configuration

        Returns:
            The list of valid moves for the specified parser
                configuration.
        """
        moves = []
        if len(config['buffer']) > 0:
            moves.append(0)
        if len(config['stack']) > 2:
            moves.append(1)
        if len(config['stack']) > 1:
            moves.append(2)
        if len(config['stack']
               ) > 2 and config['stack'][-1] > config['stack'][-2]:
            moves.append(3)
        return moves

    def move(self, config):
        """Executes a single move.

        Args:
            config: the current parser configuration

        Returns:
            The new parser configuration
        """
        if config['next_move'] == 0:
            config['stack'].append(config['buffer'].pop(0))
        elif config['next_move'] == 1:
            config['pred_tree'][config['stack'][-2]] = config['stack'][-1]
            del config['stack'][-2]
        elif config['next_move'] == 2:
            config['pred_tree'][config['stack'][-1]] = config['stack'][-2]
            del config['stack'][-1]
        elif config['next_move'] == 3:
            config['buffer'].insert(0, config['stack'].pop(-2))
        return config

    def is_descendant(self, tree, ancestor, descendant):
        """Returns true if a certain node is a descendant of another node or
            ancestor == descendant
        
        Args:
            tree: the dependency tree
            ancestor: the ancestor node
            descendant: the descendant node
            
        Returns:
            True or False
        """
        if ancestor == descendant:
            return True
        if descendant:
            return self.is_descendant(tree, ancestor, tree[descendant])
        else:
            return False

    def get_word_order(self, gold_tree):
        """Returns the word order such that the tree would be projective
        
        Args:
            gold_tree: the pependency tree of a sentence
            
        Returns:
            list of word indices
        """
        words = list(range(len(gold_tree)))
        tree = gold_tree.copy()
        word_order = [words.pop(0)]
        del tree[0]
        while words:
            node = word_order[-1]
            # children and their children
            if node in tree:
                for i in range(len(words)):
                    if self.is_descendant(gold_tree, node, words[i]):
                        word_order.append(words.pop(i))
                        del tree[i]
                        break
            # siblings and their children
            elif gold_tree[node] in tree:
                for i in range(len(words)):
                    if self.is_descendant(gold_tree, gold_tree[node],
                                          words[i]):
                        word_order.append(words.pop(i))
                        del tree[i]
                        break
            # parent
            elif gold_tree[node] in words:
                ind = words.index(gold_tree[node])
                word_order.append(words.pop(ind))
                del tree[ind]
            else:
                while node:
                    node = gold_tree[node]
                    # relatives
                    if node in tree:
                        for i in range(len(words)):
                            if self.is_descendant(gold_tree, node, words[i]):
                                word_order.append(words.pop(i))
                                del tree[i]
                                break
                        break
                    # ancestors
                    if node in words:
                        ind = words.index(node)
                        word_order.append(words.pop(ind))
                        del tree[ind]
        return word_order

    def train(self, data, beam_size=10, n_epochs=1, trunc_data=None):
        """Trains the parser on training data.

        Args:
            data: Training data, a list of sentences with gold trees.
            beam_size: the width of the beam, when using beam search
            n_epochs: for how many epochs the parser should be trained 
            trunc_data: if it should stop after processing only a port of the
                        data (only used during development)
        """
        print("Training syntactic parser:")
        for e in range(n_epochs):
            print("Epoch:", e + 1, "/", n_epochs)
            train_sentences_tags_trees = zip(   get_sentences(data), \
                                                get_tags(data), \
                                                get_trees(data) )
            for i, (words, gold_tags, gold_tree) in \
                                        enumerate(train_sentences_tags_trees):
                self.parse(words, gold_tree, beam_size=beam_size)
                print("\rUpdated with sentence #{}".format(i), end="")
                if trunc_data and i >= trunc_data:
                    break
            print("")
        self.finalize()

    def gold_move(self, config, gold_tree, word_order):
        """Returns the gold-standard move for the specified parser
        configuration.

        The gold-standard move is the first possible move from the
        following list: LEFT-ARC, RIGHT-ARC, SHIFT, SWAP. 

        Args:
            buffer: the current configuration of the parser
            gold_tree: The gold-standard dependency tree.
            word_order: the projective word order

        Returns:
            The gold-standard move for the specified parser
            configuration, or `None` if no move is possible.
        """
        buffer = config['buffer']
        stack = config['stack']
        pred_tree = config['pred_tree']
        left_arc_possible = False
        if len(stack) > 2 and stack[-1] == gold_tree[stack[-2]]:
            left_arc_possible = True
            for j in range(len(pred_tree)):
                if gold_tree[j] == stack[-2]:
                    if pred_tree[j] == 0:
                        left_arc_possible = False
        right_arc_possible = False
        if len(stack) > 1 and stack[-2] == gold_tree[stack[-1]]:
            right_arc_possible = True
            for j in range(len(pred_tree)):
                if gold_tree[j] == stack[-1]:
                    if pred_tree[j] == 0:
                        right_arc_possible = False
        swap_possible = False
        if len(stack) > 2 and \
            word_order.index(stack[-1]) < word_order.index(stack[-2]):
            swap_possible = True
        if left_arc_possible:
            return 1
        elif right_arc_possible:
            return 2
        elif swap_possible:
            return 3
        elif len(buffer) > 0:
            return 0
        else:
            return None

    def features(self, words, tags, config):
        """Extracts features for the specified parser configuration.

        Args:
            words: The input sentence, a list of words.
            tags: The list of tags for the input sentence.
            config: the current configuration of the parser

        Returns:
            A feature vector for the specified configuration.
        """
        buffer = config['buffer']
        stack = config['stack']
        pred_tree = config['pred_tree']

        feat = []

        # Single word features
        b1_w = words[buffer[0]] if buffer else "<empty>"
        b1_t = tags[buffer[0]] if buffer else "<empty>"
        b1_wt = b1_w + " " + b1_t

        b2_w = words[buffer[1]] if len(buffer) > 1 else "<empty>"
        b2_t = tags[buffer[1]] if len(buffer) > 1 else "<empty>"
        b2_wt = b2_w + " " + b2_t

        b3_w = words[buffer[2]] if len(buffer) > 2 else "<empty>"
        b3_t = tags[buffer[2]] if len(buffer) > 2 else "<empty>"
        b3_wt = b3_w + " " + b3_t

        s1_w = words[stack[-1]] if stack else "<empty>"
        s1_t = tags[stack[-1]] if stack else "<empty>"
        s1_wt = s1_w + " " + s1_t

        s2_w = words[stack[-2]] if len(stack) > 1 else "<empty>"
        s2_t = tags[stack[-2]] if len(stack) > 1 else "<empty>"
        s2_wt = s2_w + " " + s2_t
        '''
        for i in pred_tree:
            if stack and pred_tree[stack[-1]] == i:
                feat.append("tag" + str(i) + str(tags[i]))
        '''

        # Triple word features

        def is_parent(parent, child):
            if child == 0:
                return False
            if parent == child:
                return True
            return is_parent(parent, pred_tree[child])

        # Child that is the most on the left
        def lc1(parent):
            for i in range(0, len(words)):
                if is_parent(parent, i):
                    return i
            return -1

        # Child that is the most on the right
        def rc1(parent):
            for i in range(0, len(words), -1):
                if is_parent(parent, i):
                    return i
            return -1

        lc1_s1 = lc1(stack[-1]) if stack else -1
        rc1_s1 = rc1(stack[-1]) if stack else -1
        lc1_s2 = lc1(stack[-2]) if len(stack) > 1 else -1
        rc1_s2 = rc1(stack[-2]) if len(stack) > 1 else -1

        s2_t_s1_t_b1_t = s2_t + " " + s1_t + " " + b1_t
        if lc1_s1 >= 0:
            s2_t_s1_t_lc1_s1_t = s2_t + " " + s1_t + " " + tags[lc1_s1]
        else:
            s2_t_s1_t_lc1_s1_t = "<empty>"
        if rc1_s1 >= 0:
            s2_t_s1_t_rc1_s1_t = s2_t + " " + s1_t + " " + tags[rc1_s1]
        else:
            s2_t_s1_t_rc1_s1_t = "<empty>"
        if lc1_s2 >= 0:
            s2_t_s1_t_lc1_s2_t = s2_t + " " + s1_t + " " + tags[rc1_s2]
        else:
            s2_t_s1_t_lc1_s2_t = "<empty>"
        if rc1_s2 >= 0:
            s2_t_s1_t_rc1_s2_t = s2_t + " " + s1_t + " " + tags[rc1_s2]
        else:
            s2_t_s1_t_rc1_s2_t = "<empty>"
        if lc1_s2 >= 0:
            s2_t_s1_w_rc1_s2_t = s2_t + " " + s1_w + " " + tags[rc1_s2]
        else:
            s2_t_s1_w_rc1_s2_t = "<empty>"
        if lc1_s1 >= 0:
            s2_t_s1_w_lc1_s1_t = s2_t + " " + s1_w + " " + tags[lc1_s1]
        else:
            s2_t_s1_w_lc1_s1_t = "<empty>"

        feat.append("b1_w:" + b1_w)
        feat.append("b1_t:" + b1_t)
        feat.append("b1_wt:" + b1_wt)

        feat.append("b2_w:" + b2_w)
        feat.append("b2_t:" + b2_t)
        feat.append("b2_wt:" + b2_wt)

        feat.append("b3_w:" + b3_w)
        feat.append("b3_t:" + b3_t)
        feat.append("b3_wt:" + b3_wt)

        feat.append("s1_w:" + s1_w)
        feat.append("s1_t:" + s1_t)
        feat.append("s1_wt:" + s1_wt)

        feat.append("s2_w:" + s2_w)
        feat.append("s2_t:" + s2_t)
        feat.append("s2_wt:" + s2_wt)

        feat.append("s1_wt_s2_wt:" + s1_wt + " " + s2_wt)
        feat.append("s1_wt_s2_w:" + s1_wt + " " + s2_w)
        feat.append("s1_wt_s2_t:" + s1_wt + " " + s2_t)
        feat.append("s1_w_s2_wt:" + s1_w + " " + s2_wt)
        feat.append("s1_t_s2_wt:" + s1_t + " " + s2_wt)
        feat.append("s1_w_s2_w:" + s1_w + " " + s2_w)
        feat.append("s1_t_s2_t:" + s1_t + " " + s2_t)
        feat.append("s1_t_b1_t:" + s1_t + " " + b1_t)

        feat.append("s2_t_s1_t_b1_t:" + s2_t_s1_t_b1_t)
        feat.append("s2_t_s1_t_lc1_s1_t:" + s2_t_s1_t_lc1_s1_t)
        feat.append("s2_t_s1_t_rc1_s1_t:" + s2_t_s1_t_rc1_s1_t)
        feat.append("s2_t_s1_t_lc1_s2_t:" + s2_t_s1_t_lc1_s2_t)
        feat.append("s2_t_s1_t_rc1_s2_t:" + s2_t_s1_t_rc1_s2_t)
        feat.append("s2_t_s1_w_rc1_s2_t:" + s2_t_s1_w_rc1_s2_t)
        feat.append("s2_t_s1_w_lc1_s1_t:" + s2_t_s1_w_lc1_s1_t)

        return feat

    def finalize(self):
        """Averages the weight vectors."""
        self.classifier.finalize()
Exemple #9
0
 def __init__(self, tagger):
     """Initializes a new parser."""
     self.tagger = tagger
     self.classifier = Perceptron()
Exemple #10
0
#And Implementation
#Third attribute is bias (always one)
from perceptron.perceptron import Perceptron
from perceptron.tester import Tester

# The weights are set manually.
perAnd = Perceptron([0.5,0.5,-0.6])

# All states are tested.
print(perAnd.binaryOutput([-1,-1,1]))
print(perAnd.binaryOutput([-1,1,1]))
print(perAnd.binaryOutput([1,-1,1]))
print(perAnd.binaryOutput([1,1,1]))

# Tester shows the success rate of the classification. (In this easy case it is 1.0 (100%).
tester = Tester()
tester.setDataset([[-1,-1,1,-1],[-1,1,1,-1],[1,-1,1,-1],[1,1,1,1]])
print("Success rate:",tester.testPerceptron(perAnd))
Exemple #11
0
#And Implementation by training
#Third attribute is bias (always one)

from perceptron.perceptron import Perceptron
from perceptron.tester import Tester

# Initial weights are way off.
perAnd = Perceptron([0.3, -0.2, 0.6])

# The perceptron is not working before training
print("Before Training:")
print(perAnd.binaryOutput([-1, -1, 1]))
print(perAnd.binaryOutput([-1, 1, 1]))
print(perAnd.binaryOutput([1, -1, 1]))
print(perAnd.binaryOutput([1, 1, 1]))

# As the states are limited, we use them several times to train the perceptron.
trainingDataset = [[-1, -1, 1, -1], [-1, 1, 1, -1], [1, -1, 1,
                                                     -1], [1, 1, 1, 1],
                   [-1, -1, 1, -1], [-1, 1, 1, -1], [1, -1, 1,
                                                     -1], [1, 1, 1, 1],
                   [-1, -1, 1, -1], [-1, 1, 1, -1], [1, -1, 1,
                                                     -1], [1, 1, 1, 1],
                   [-1, -1, 1, -1], [-1, 1, 1, -1], [1, -1, 1,
                                                     -1], [1, 1, 1, 1],
                   [-1, -1, 1, -1], [-1, 1, 1, -1], [1, -1, 1,
                                                     -1], [1, 1, 1, 1],
                   [-1, -1, 1, -1], [-1, 1, 1, -1], [1, -1, 1, -1],
                   [1, 1, 1, 1]]
perAnd.train(trainingDataset)
from perceptron.perceptron import Perceptron
from linear_discriminant_analysis.fisher_lda import FisherLDA
import pandas as pd
import numpy as np

# Pereceptron Test
df = pd.read_csv('datasets/dataset_1.csv', names=['X1', 'X2', 'y'])
df['y'] = df['y'].replace(0, -1)
print(df.head())
p = Perceptron(0.01, 20, 2, 0, '3', './images/')
X = np.array(df[['X1', 'X2']])
y = df['y']
p.fit(X, y)

# Fishers LDA Test
disc = FisherLDA(dataset=1)
disc.visualize()
Exemple #13
0
class Tagger():
    """A part-of-speech tagger based on a multi-class perceptron
    classifier.

    This tagger implements a simple, left-to-right tagging algorithm
    where the prediction of the tag for the next word in the sentence
    can be based on the surrounding words and the previously
    predicted tags. The exact features that this prediction is based
    on can be controlled with the `features()` method, which should
    return a feature vector that can be used as an input to the
    multi-class perceptron.

    Attributes:
        classifier: A multi-class perceptron classifier.
    """
    def __init__(self):
        """Initialises a new tagger."""
        self.classifier = Perceptron()

    def features(self, words, i, pred_tags):
        """Extracts features for the specified tagger configuration.
        
        Args:
            words: The input sentence, a list of words.
            i: The index of the word that is currently being tagged.
            pred_tags: The list of previously predicted tags.
        
        Returns:
            A feature vector for the specified configuration.
        """
        features = []
        for n in range(4):
            features.append("w_0=" + words[i])
        if words[i][0] == words[i][0].upper():
            features.append("capital_word")
        if words[i] == words[i].lower():
            features.append("lowercase")
        if i > 0:
            features.append("t_-1=" + pred_tags[i - 1])
            features.append("suff1_-1=" + words[i - 1][-1])
            features.append("suff2_-1=" + words[i - 1][-2:])
            features.append("suff3_-1=" + words[i - 1][-3:])
            features.append("pre2_-1=" + words[i - 1][:2])
        if i + 1 < len(words):
            features.append("w_1" + words[i + 1])
            features.append("suff1_1=" + words[i + 1][-1])
            features.append("suff2_1=" + words[i + 1][-2:])
            features.append("suff3_1=" + words[i + 1][-3:])
            features.append("pre1_1=" + words[i + 1][0])
            features.append("pre2_1=" + words[i + 1][:2])
            features.append("pre3_1=" + words[i + 1][:3])
        if i + 2 < len(words):
            features.append("w_2" + words[i + 2])
        if i + 3 < len(words):
            features.append("w_3" + words[i + 3])

        features.append("suff1_0=" + words[i][-1])
        features.append("suff2_0=" + words[i][-2:])
        features.append("suff3_0=" + words[i][-3:])
        features.append("pre1_0=" + words[i][0])
        features.append("pre2_0=" + words[i][:2])
        features.append("pre3_0=" + words[i][:3])
        return features

    def tag(self, words):
        """Tags a sentence with part-of-speech tags.

        Args:
            words: The input sentence, a list of words.

        Returns:
            The list of predicted tags for the input sentence.
        """
        pred_tags = []
        for i in range(len(words)):
            feat = self.features(words, i, pred_tags)
            tag, _ = self.classifier.predict(feat)
            pred_tags.append(tag)
        return pred_tags

    def update(self, words, gold_tags):
        """Updates the tagger with a single training instance.

        Args:
            words: The list of words in the input sentence.
            gold_tags: The list of gold-standard tags for the input
                sentence.

        Returns:
            The list of predicted tags for the input sentence.
        """
        pred_tags = []
        for i in range(len(words)):
            feat = self.features(words, i, pred_tags)
            pred_tags.append(self.classifier.update(feat, gold_tags[i]))
        return pred_tags

    def train(self, data, n_epochs=1, trunc_data=None):
        """Train a new tagger on training data.

        Args:
            data: Training data, a list of tagged sentences.
        """

        print("Training POS tagger")
        for e in range(n_epochs):
            print("Epoch:", e + 1, "/", n_epochs)
            train_sentences_tags = zip(get_sentences(data), get_tags(data))
            for i, (words, tags) in enumerate(train_sentences_tags):
                print("\rUpdated with sentence #{}".format(i), end="")
                self.update(words, tags)
                if trunc_data and i >= trunc_data:
                    break
            print("")
        self.finalize()

    def finalize(self):
        """Finalizes the classifier by averaging its weight vectors."""
        self.classifier.finalize()
Exemple #14
0
 def __init__(self):
     """Initialises a new tagger."""
     self.classifier = Perceptron()