def _create_output_layer(self): output_layer = [] for i in range(0, self.number_of_outputs): perceptron = Perceptron( layer=len(self.layers), activation_function=self.activation_function) output_layer.append(perceptron) self._connect_neuron(perceptron) return output_layer
def train_perceptron(): network = Perceptron() input_count = len(dataset[0].inputs) print('----------------------------') print('Generating layers') for _ in range(input_count): network.s_layer.add_neuron(None, lambda value: value) print('S-layer generated') a_neurons_count = 2 ** input_count - 1 for position in range(a_neurons_count): neuron = ANeuron(None, lambda value: int(value >= 0)) # инициализация весов нейронов А слоя neuron.input_weights = [ random.choice([-1, 0, 1]) for i in range(input_count) ] neuron.calculate_bias() network.a_layer.neurons.append(neuron) print('A-layer generated') for _ in range(NUMBER_COUNT): network.r_layer.add_neuron(a_neurons_count, lambda: 0, lambda value: 1 if value >=0 else -1, 0.01, 0) print('R-layer generated') network.train(dataset) network.optimize(dataset) return network
def test_predict(self): p = Perceptron() p.weights = [1, 2] self.assertEqual(p.predict([1, 2]), 1) p.weights = [-1, -2] self.assertEqual(p.predict([1, 2]), 0)
from perceptron.perceptron import Perceptron import numpy as np X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]]) y = np.array([[0], [1], [1], [1]]) print("[INFO] training perceptron...") p = Perceptron(X.shape[1], alpha=0.1) p.fit(X, y, epochs=20) print("[INFO[ testing perceptron...") for (x, target) in zip(X, y): pred = p.predict(x) print("[INFO] data = {}. ground truth={}, pred = {}".format( x, target[0], pred))
def __init__(self, input_num): '''初始化线性单元,设置输入参数的个数''' Perceptron.__init__(self, input_num, f)
from matplotlib import pyplot as plt from sklearn.model_selection import train_test_split from perceptron.perceptron import Perceptron from utils.abalone_data import get_abalone x, y = get_abalone() print(x.shape) print(y.shape) x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.20) model = Perceptron(input_shape=[1, 9]) model.train(x_train, y_train, 0.0005, 100) plt.plot(model.historical_error) plt.show()
def setUp(self): self.perceptron = Perceptron()
class Parser(): """A transition-based dependency parser. This parser implements the arc-standard algorithm for dependency parsing. When being presented with an input sentence, it first tags the sentence for parts of speech, and then uses a multi-class perceptron classifier to predict a sequence of *moves* (transitions) that construct a dependency tree for the input sentence. Moves are encoded as integers as follows: SHIFT = 0, LEFT-ARC = 1, RIGHT-ARC = 2, SWAP = 3 At any given point in the predicted sequence, the state of the parser can be specified by: a buffer containing the words in the input sentence that the parser has not yet started to process; a stack holding the indices of those words that are currently being processed; and a partial dependency tree, represented as a list of indices such that `tree[i]` gives the index of the head (parent node) of the word at position `i`, or 0 in case the corresponding word has not yet been assigned a head. Attributes: tagger: A part-of-speech tagger. classifier: A multi-class perceptron classifier used to predict the next move of the parser. """ def __init__(self, tagger): """Initializes a new parser.""" self.tagger = tagger self.classifier = Perceptron() def initial_config(self, words): """Initializes the config for the parser Args: words: the words of a sentence Returns: a initial parser config """ config = {} config['score'] = 0 config['pred_tree'] = [0] * len(words) config['stack'] = [] config['buffer'] = list(range(len(words))) config['next_move'] = 0 config['is_gold'] = True return config def predict(self, feat, candidates): """Calls the predict function of the classifier and applies the softmax function on the scores Args: feat: a feature vector candidates: the possible moves Returns: the possible moves with their respective scores """ _, scores = self.classifier.predict(feat, candidates) if scores: # apply softmax on the scores scores_lst = [(k, v) for k, v in scores.items()] softmax_scores = softmax(list(zip(*scores_lst))[1]) scores = dict(list(zip(list(zip(*scores_lst))[0], softmax_scores))) return scores def update_and_reset_config(self, config, feat, gold_move): """This functions is called when the gold_tree falls of the beam. It updates the classifier and resets the parser config such that only the gold configuration is in the beam. Args: config: the parser gold config feat: a featire vector gold_move: the correct move Returns: the new config """ config['next_move'] = gold_move self.classifier.update(feat, gold_move) return [config] def parse(self, words, gold_tree=None, beam_size=10): """Parses a sentence and also updates the classifier if a gold tree was passed to the function Args: words: The input sentence, a list of words. gold_tree: if a gold_tree is passed, the classifier is trained beam_size: the width of the beam, when using beam search Returns: A pair consisting of the predicted tags and the predicted dependency tree for the input sentence. """ if gold_tree: word_order = self.get_word_order(gold_tree) tags = self.tagger.tag(words) possible_configs = [self.initial_config(words)] while any(config['next_move'] != None for config in possible_configs): old_possible_configs = possible_configs possible_configs = [] for config in old_possible_configs: config = self.move(config) candidates = self.valid_moves(config) if candidates: feat = self.features(words, tags, config) scores = self.predict(feat, candidates) if gold_tree: gold_move = self.gold_move(config, gold_tree, \ word_order) if config['is_gold'] and gold_move not in scores: possible_configs = self.update_and_reset_config( \ config, feat, gold_move) break # add new configs for the possible moves for curr_move, curr_score in scores.items(): # create a copy of the config and append it to the list new_config = deepcopy(config) if curr_score > 0: new_config['score'] += log(curr_score) else: new_config['score'] += float("-inf") new_config['next_move'] = curr_move if gold_tree and gold_move != curr_move: new_config['is_gold'] = False possible_configs.append(new_config) else: config['next_move'] = None possible_configs.append(config) # delete the configs with the lowest scores while len(possible_configs) > beam_size: worst_conf_ind, worst_conf = \ min(enumerate(possible_configs), key = lambda t: t[1]['score']) if gold_tree and worst_conf['is_gold'] == True: feat = self.features(words, tags, worst_conf) possible_configs = self.update_and_reset_config( \ worst_conf, feat, worst_conf['next_move']) else: del possible_configs[worst_conf_ind] # return best tree best_config = max(possible_configs, key=lambda t: t['score']) return tags, best_config['pred_tree'] def valid_moves(self, config): """Returns the valid moves for the specified parser configuration. Args: config: the current parser configuration Returns: The list of valid moves for the specified parser configuration. """ moves = [] if len(config['buffer']) > 0: moves.append(0) if len(config['stack']) > 2: moves.append(1) if len(config['stack']) > 1: moves.append(2) if len(config['stack'] ) > 2 and config['stack'][-1] > config['stack'][-2]: moves.append(3) return moves def move(self, config): """Executes a single move. Args: config: the current parser configuration Returns: The new parser configuration """ if config['next_move'] == 0: config['stack'].append(config['buffer'].pop(0)) elif config['next_move'] == 1: config['pred_tree'][config['stack'][-2]] = config['stack'][-1] del config['stack'][-2] elif config['next_move'] == 2: config['pred_tree'][config['stack'][-1]] = config['stack'][-2] del config['stack'][-1] elif config['next_move'] == 3: config['buffer'].insert(0, config['stack'].pop(-2)) return config def is_descendant(self, tree, ancestor, descendant): """Returns true if a certain node is a descendant of another node or ancestor == descendant Args: tree: the dependency tree ancestor: the ancestor node descendant: the descendant node Returns: True or False """ if ancestor == descendant: return True if descendant: return self.is_descendant(tree, ancestor, tree[descendant]) else: return False def get_word_order(self, gold_tree): """Returns the word order such that the tree would be projective Args: gold_tree: the pependency tree of a sentence Returns: list of word indices """ words = list(range(len(gold_tree))) tree = gold_tree.copy() word_order = [words.pop(0)] del tree[0] while words: node = word_order[-1] # children and their children if node in tree: for i in range(len(words)): if self.is_descendant(gold_tree, node, words[i]): word_order.append(words.pop(i)) del tree[i] break # siblings and their children elif gold_tree[node] in tree: for i in range(len(words)): if self.is_descendant(gold_tree, gold_tree[node], words[i]): word_order.append(words.pop(i)) del tree[i] break # parent elif gold_tree[node] in words: ind = words.index(gold_tree[node]) word_order.append(words.pop(ind)) del tree[ind] else: while node: node = gold_tree[node] # relatives if node in tree: for i in range(len(words)): if self.is_descendant(gold_tree, node, words[i]): word_order.append(words.pop(i)) del tree[i] break break # ancestors if node in words: ind = words.index(node) word_order.append(words.pop(ind)) del tree[ind] return word_order def train(self, data, beam_size=10, n_epochs=1, trunc_data=None): """Trains the parser on training data. Args: data: Training data, a list of sentences with gold trees. beam_size: the width of the beam, when using beam search n_epochs: for how many epochs the parser should be trained trunc_data: if it should stop after processing only a port of the data (only used during development) """ print("Training syntactic parser:") for e in range(n_epochs): print("Epoch:", e + 1, "/", n_epochs) train_sentences_tags_trees = zip( get_sentences(data), \ get_tags(data), \ get_trees(data) ) for i, (words, gold_tags, gold_tree) in \ enumerate(train_sentences_tags_trees): self.parse(words, gold_tree, beam_size=beam_size) print("\rUpdated with sentence #{}".format(i), end="") if trunc_data and i >= trunc_data: break print("") self.finalize() def gold_move(self, config, gold_tree, word_order): """Returns the gold-standard move for the specified parser configuration. The gold-standard move is the first possible move from the following list: LEFT-ARC, RIGHT-ARC, SHIFT, SWAP. Args: buffer: the current configuration of the parser gold_tree: The gold-standard dependency tree. word_order: the projective word order Returns: The gold-standard move for the specified parser configuration, or `None` if no move is possible. """ buffer = config['buffer'] stack = config['stack'] pred_tree = config['pred_tree'] left_arc_possible = False if len(stack) > 2 and stack[-1] == gold_tree[stack[-2]]: left_arc_possible = True for j in range(len(pred_tree)): if gold_tree[j] == stack[-2]: if pred_tree[j] == 0: left_arc_possible = False right_arc_possible = False if len(stack) > 1 and stack[-2] == gold_tree[stack[-1]]: right_arc_possible = True for j in range(len(pred_tree)): if gold_tree[j] == stack[-1]: if pred_tree[j] == 0: right_arc_possible = False swap_possible = False if len(stack) > 2 and \ word_order.index(stack[-1]) < word_order.index(stack[-2]): swap_possible = True if left_arc_possible: return 1 elif right_arc_possible: return 2 elif swap_possible: return 3 elif len(buffer) > 0: return 0 else: return None def features(self, words, tags, config): """Extracts features for the specified parser configuration. Args: words: The input sentence, a list of words. tags: The list of tags for the input sentence. config: the current configuration of the parser Returns: A feature vector for the specified configuration. """ buffer = config['buffer'] stack = config['stack'] pred_tree = config['pred_tree'] feat = [] # Single word features b1_w = words[buffer[0]] if buffer else "<empty>" b1_t = tags[buffer[0]] if buffer else "<empty>" b1_wt = b1_w + " " + b1_t b2_w = words[buffer[1]] if len(buffer) > 1 else "<empty>" b2_t = tags[buffer[1]] if len(buffer) > 1 else "<empty>" b2_wt = b2_w + " " + b2_t b3_w = words[buffer[2]] if len(buffer) > 2 else "<empty>" b3_t = tags[buffer[2]] if len(buffer) > 2 else "<empty>" b3_wt = b3_w + " " + b3_t s1_w = words[stack[-1]] if stack else "<empty>" s1_t = tags[stack[-1]] if stack else "<empty>" s1_wt = s1_w + " " + s1_t s2_w = words[stack[-2]] if len(stack) > 1 else "<empty>" s2_t = tags[stack[-2]] if len(stack) > 1 else "<empty>" s2_wt = s2_w + " " + s2_t ''' for i in pred_tree: if stack and pred_tree[stack[-1]] == i: feat.append("tag" + str(i) + str(tags[i])) ''' # Triple word features def is_parent(parent, child): if child == 0: return False if parent == child: return True return is_parent(parent, pred_tree[child]) # Child that is the most on the left def lc1(parent): for i in range(0, len(words)): if is_parent(parent, i): return i return -1 # Child that is the most on the right def rc1(parent): for i in range(0, len(words), -1): if is_parent(parent, i): return i return -1 lc1_s1 = lc1(stack[-1]) if stack else -1 rc1_s1 = rc1(stack[-1]) if stack else -1 lc1_s2 = lc1(stack[-2]) if len(stack) > 1 else -1 rc1_s2 = rc1(stack[-2]) if len(stack) > 1 else -1 s2_t_s1_t_b1_t = s2_t + " " + s1_t + " " + b1_t if lc1_s1 >= 0: s2_t_s1_t_lc1_s1_t = s2_t + " " + s1_t + " " + tags[lc1_s1] else: s2_t_s1_t_lc1_s1_t = "<empty>" if rc1_s1 >= 0: s2_t_s1_t_rc1_s1_t = s2_t + " " + s1_t + " " + tags[rc1_s1] else: s2_t_s1_t_rc1_s1_t = "<empty>" if lc1_s2 >= 0: s2_t_s1_t_lc1_s2_t = s2_t + " " + s1_t + " " + tags[rc1_s2] else: s2_t_s1_t_lc1_s2_t = "<empty>" if rc1_s2 >= 0: s2_t_s1_t_rc1_s2_t = s2_t + " " + s1_t + " " + tags[rc1_s2] else: s2_t_s1_t_rc1_s2_t = "<empty>" if lc1_s2 >= 0: s2_t_s1_w_rc1_s2_t = s2_t + " " + s1_w + " " + tags[rc1_s2] else: s2_t_s1_w_rc1_s2_t = "<empty>" if lc1_s1 >= 0: s2_t_s1_w_lc1_s1_t = s2_t + " " + s1_w + " " + tags[lc1_s1] else: s2_t_s1_w_lc1_s1_t = "<empty>" feat.append("b1_w:" + b1_w) feat.append("b1_t:" + b1_t) feat.append("b1_wt:" + b1_wt) feat.append("b2_w:" + b2_w) feat.append("b2_t:" + b2_t) feat.append("b2_wt:" + b2_wt) feat.append("b3_w:" + b3_w) feat.append("b3_t:" + b3_t) feat.append("b3_wt:" + b3_wt) feat.append("s1_w:" + s1_w) feat.append("s1_t:" + s1_t) feat.append("s1_wt:" + s1_wt) feat.append("s2_w:" + s2_w) feat.append("s2_t:" + s2_t) feat.append("s2_wt:" + s2_wt) feat.append("s1_wt_s2_wt:" + s1_wt + " " + s2_wt) feat.append("s1_wt_s2_w:" + s1_wt + " " + s2_w) feat.append("s1_wt_s2_t:" + s1_wt + " " + s2_t) feat.append("s1_w_s2_wt:" + s1_w + " " + s2_wt) feat.append("s1_t_s2_wt:" + s1_t + " " + s2_wt) feat.append("s1_w_s2_w:" + s1_w + " " + s2_w) feat.append("s1_t_s2_t:" + s1_t + " " + s2_t) feat.append("s1_t_b1_t:" + s1_t + " " + b1_t) feat.append("s2_t_s1_t_b1_t:" + s2_t_s1_t_b1_t) feat.append("s2_t_s1_t_lc1_s1_t:" + s2_t_s1_t_lc1_s1_t) feat.append("s2_t_s1_t_rc1_s1_t:" + s2_t_s1_t_rc1_s1_t) feat.append("s2_t_s1_t_lc1_s2_t:" + s2_t_s1_t_lc1_s2_t) feat.append("s2_t_s1_t_rc1_s2_t:" + s2_t_s1_t_rc1_s2_t) feat.append("s2_t_s1_w_rc1_s2_t:" + s2_t_s1_w_rc1_s2_t) feat.append("s2_t_s1_w_lc1_s1_t:" + s2_t_s1_w_lc1_s1_t) return feat def finalize(self): """Averages the weight vectors.""" self.classifier.finalize()
def __init__(self, tagger): """Initializes a new parser.""" self.tagger = tagger self.classifier = Perceptron()
#And Implementation #Third attribute is bias (always one) from perceptron.perceptron import Perceptron from perceptron.tester import Tester # The weights are set manually. perAnd = Perceptron([0.5,0.5,-0.6]) # All states are tested. print(perAnd.binaryOutput([-1,-1,1])) print(perAnd.binaryOutput([-1,1,1])) print(perAnd.binaryOutput([1,-1,1])) print(perAnd.binaryOutput([1,1,1])) # Tester shows the success rate of the classification. (In this easy case it is 1.0 (100%). tester = Tester() tester.setDataset([[-1,-1,1,-1],[-1,1,1,-1],[1,-1,1,-1],[1,1,1,1]]) print("Success rate:",tester.testPerceptron(perAnd))
#And Implementation by training #Third attribute is bias (always one) from perceptron.perceptron import Perceptron from perceptron.tester import Tester # Initial weights are way off. perAnd = Perceptron([0.3, -0.2, 0.6]) # The perceptron is not working before training print("Before Training:") print(perAnd.binaryOutput([-1, -1, 1])) print(perAnd.binaryOutput([-1, 1, 1])) print(perAnd.binaryOutput([1, -1, 1])) print(perAnd.binaryOutput([1, 1, 1])) # As the states are limited, we use them several times to train the perceptron. trainingDataset = [[-1, -1, 1, -1], [-1, 1, 1, -1], [1, -1, 1, -1], [1, 1, 1, 1], [-1, -1, 1, -1], [-1, 1, 1, -1], [1, -1, 1, -1], [1, 1, 1, 1], [-1, -1, 1, -1], [-1, 1, 1, -1], [1, -1, 1, -1], [1, 1, 1, 1], [-1, -1, 1, -1], [-1, 1, 1, -1], [1, -1, 1, -1], [1, 1, 1, 1], [-1, -1, 1, -1], [-1, 1, 1, -1], [1, -1, 1, -1], [1, 1, 1, 1], [-1, -1, 1, -1], [-1, 1, 1, -1], [1, -1, 1, -1], [1, 1, 1, 1]] perAnd.train(trainingDataset)
from perceptron.perceptron import Perceptron from linear_discriminant_analysis.fisher_lda import FisherLDA import pandas as pd import numpy as np # Pereceptron Test df = pd.read_csv('datasets/dataset_1.csv', names=['X1', 'X2', 'y']) df['y'] = df['y'].replace(0, -1) print(df.head()) p = Perceptron(0.01, 20, 2, 0, '3', './images/') X = np.array(df[['X1', 'X2']]) y = df['y'] p.fit(X, y) # Fishers LDA Test disc = FisherLDA(dataset=1) disc.visualize()
class Tagger(): """A part-of-speech tagger based on a multi-class perceptron classifier. This tagger implements a simple, left-to-right tagging algorithm where the prediction of the tag for the next word in the sentence can be based on the surrounding words and the previously predicted tags. The exact features that this prediction is based on can be controlled with the `features()` method, which should return a feature vector that can be used as an input to the multi-class perceptron. Attributes: classifier: A multi-class perceptron classifier. """ def __init__(self): """Initialises a new tagger.""" self.classifier = Perceptron() def features(self, words, i, pred_tags): """Extracts features for the specified tagger configuration. Args: words: The input sentence, a list of words. i: The index of the word that is currently being tagged. pred_tags: The list of previously predicted tags. Returns: A feature vector for the specified configuration. """ features = [] for n in range(4): features.append("w_0=" + words[i]) if words[i][0] == words[i][0].upper(): features.append("capital_word") if words[i] == words[i].lower(): features.append("lowercase") if i > 0: features.append("t_-1=" + pred_tags[i - 1]) features.append("suff1_-1=" + words[i - 1][-1]) features.append("suff2_-1=" + words[i - 1][-2:]) features.append("suff3_-1=" + words[i - 1][-3:]) features.append("pre2_-1=" + words[i - 1][:2]) if i + 1 < len(words): features.append("w_1" + words[i + 1]) features.append("suff1_1=" + words[i + 1][-1]) features.append("suff2_1=" + words[i + 1][-2:]) features.append("suff3_1=" + words[i + 1][-3:]) features.append("pre1_1=" + words[i + 1][0]) features.append("pre2_1=" + words[i + 1][:2]) features.append("pre3_1=" + words[i + 1][:3]) if i + 2 < len(words): features.append("w_2" + words[i + 2]) if i + 3 < len(words): features.append("w_3" + words[i + 3]) features.append("suff1_0=" + words[i][-1]) features.append("suff2_0=" + words[i][-2:]) features.append("suff3_0=" + words[i][-3:]) features.append("pre1_0=" + words[i][0]) features.append("pre2_0=" + words[i][:2]) features.append("pre3_0=" + words[i][:3]) return features def tag(self, words): """Tags a sentence with part-of-speech tags. Args: words: The input sentence, a list of words. Returns: The list of predicted tags for the input sentence. """ pred_tags = [] for i in range(len(words)): feat = self.features(words, i, pred_tags) tag, _ = self.classifier.predict(feat) pred_tags.append(tag) return pred_tags def update(self, words, gold_tags): """Updates the tagger with a single training instance. Args: words: The list of words in the input sentence. gold_tags: The list of gold-standard tags for the input sentence. Returns: The list of predicted tags for the input sentence. """ pred_tags = [] for i in range(len(words)): feat = self.features(words, i, pred_tags) pred_tags.append(self.classifier.update(feat, gold_tags[i])) return pred_tags def train(self, data, n_epochs=1, trunc_data=None): """Train a new tagger on training data. Args: data: Training data, a list of tagged sentences. """ print("Training POS tagger") for e in range(n_epochs): print("Epoch:", e + 1, "/", n_epochs) train_sentences_tags = zip(get_sentences(data), get_tags(data)) for i, (words, tags) in enumerate(train_sentences_tags): print("\rUpdated with sentence #{}".format(i), end="") self.update(words, tags) if trunc_data and i >= trunc_data: break print("") self.finalize() def finalize(self): """Finalizes the classifier by averaging its weight vectors.""" self.classifier.finalize()
def __init__(self): """Initialises a new tagger.""" self.classifier = Perceptron()