from performance import Performance from goody import irange from graph_goody import random, spanning_tree # Put script here to generate data for Problem #1 g = None def create_random(n): global g g = random(n, lambda n : 10*n) for i in irange(0,7) : n = 1000 * 2**i p = Performance(lambda : spanning_tree(g), lambda : create_random(n),5,'Spanning Tree of size {}'.format(n)) p.evaluate() p.analyze() print()
import random from goody import irange from priorityqueue import PriorityQueue from performance import Performance def setup(N): global pq pq = PriorityQueue([random.randrange(0, N) for i in range(0, N)]) def code(N): global pq for i in range(N): pq.remove() for i in irange(0, 8): N = 10000*2**i P = Performance(lambda: code(10000), lambda: setup(N), 8, title = "\nPriority Queue of size " + str(N)) P.evaluate() P.analyze()
from performance import Performance from goody import irange from graph_goody import random_graph,spanning_tree from graph import Graph # Put script below to generate data for Problem #1 # In case you fail, the data appears in sample8.pdf in the helper folder global nodes global graph if __name__ == '__main__': nodes = 1000 while nodes <= 128000: graph = random_graph(nodes,lambda n : 10*n) perf = Performance(lambda: spanning_tree(graph),setup=lambda:None,times_to_measure=5,title='Spanning Tree Timings for '+str(nodes)+' nodes') perf.evaluate() perf.analyze() nodes *= 2
def random_graph(nodes: int, edges: int) -> {str: {str}}: g = {str(n): set() for n in range(nodes)} for i in range(int(edges)): n1 = str(randrange(nodes)) n2 = str(randrange(nodes)) if n1 != n2 and n1 in g and n2 not in g[n1]: g[n1].add(n2) g[n2].add(n1) return g # Put code here to generate data for Quiz 8 problem #1 def create_random(): global grph grph = random_graph(nodes, nodes * 5) nodes = 100 while nodes <= 12800: create_random() performance = Performance(code=lambda: find_influencers(graph=grph), setup=lambda: create_random(), times_to_measure=5, title="find_influencers of size " + str(nodes)) for i in irange(5): performance.evaluate() performance.analyze() nodes = nodes * 2 print()
import random from goody import irange from performance import Performance from priorityqueue import PriorityQueue def setup(size): global pq alist = [i for i in range(size)] random.shuffle(alist) pq = PriorityQueue(alist) def code(removes): global pq for i in range(removes): pq.remove() for i in irange(0,8): size = 10000 * 2**i p = Performance(lambda : code(10000), lambda:setup(size),5,'\n\nPriority Queue of size ' + str(size)) p.evaluate() p.analyze()
from performance import Performance from goody import irange from graph_goody import random, spanning_tree # Put script here to generate data for Problem #1 def create_random(): global dog dog = random(x*1000, lambda n : 10*n) if __name__ == '__main__': x=1 while x<129: y = Performance(lambda:spanning_tree(dog), lambda:create_random(), title = "Spanning Tree of Size " + str(x*1000)) y.evaluate() y.analyze() print() x = 2*x
from graph_goody import random_graph, spanning_tree from graph import Graph #Submitter edwardc6(Chen,Edward) # Put script here to generate data for Problem #1 # In case you fail, the data appears in sample8.pdf in the helper folder # random(100,lambda n : 10*n) def create_random(n): global rand_graph rand_graph = random_graph(n, lambda n: 10 * n) def span_time(n): global rand_graph spanning_tree(rand_graph) z = 500 while True: n = z * 2 if (n == 256000): break zoon = 'Spanning Tree of size {}'.format(str(n)) jk = Performance(lambda: span_time(rand_graph), lambda: create_random(n), 5, zoon) jk.evaluate() jk.analyze() print() z = n