def scores(results): tmp = copy.copy(results) scores = [] for k, v in tmp.iteritems(): ind = analyze.nearest(v[5], v[4]) scores.append((v[0], v[1], v[2], v[3], np.median(np.sqrt( ((v[4][ind] - v[5])**2).sum(axis=-1))), float(len(v[5])) / len(v[4]))) return scores
def crb_compare(state0, samples0, state1, samples1, crb0=None, crb1=None, zlayer=None, xlayer=None): """ To run, do: s,h = pickle... s1,h1 = pickle... i.e. /media/scratch/bamf/vacancy/vacancy_zoom-1.tif_t002.tif-featured-v2.pkl i.e. /media/scratch/bamf/frozen-particles/0.tif-featured-full.pkl crb0 = diag_crb_particles(s); crb1 = diag_crb_particles(s1) crb_compare(s,h[-25:],s1,h1[-25:], crb0, crb1) """ s0 = state0 s1 = state1 h0 = np.array(samples0) h1 = np.array(samples1) slicez = zlayer or s0.image.shape[0] // 2 slicex = xlayer or s0.image.shape[2] // 2 slicer1 = np.s_[slicez, s0.pad:-s0.pad, s0.pad:-s0.pad] slicer2 = np.s_[s0.pad:-s0.pad, s0.pad:-s0.pad, slicex] center = (slicez, s0.image.shape[1] // 2, slicex) mu0 = h0.mean(axis=0) mu1 = h1.mean(axis=0) std0 = h0.std(axis=0) std1 = h1.std(axis=0) mask0 = (s0.state[s0.b_typ] == 1.) & (analyze.trim_box( s0, mu0[s0.b_pos].reshape(-1, 3))) mask1 = (s1.state[s1.b_typ] == 1.) & (analyze.trim_box( s1, mu1[s1.b_pos].reshape(-1, 3))) active0 = np.arange(s0.N)[mask0] #s0.state[s0.b_typ]==1.] active1 = np.arange(s1.N)[mask1] #s1.state[s1.b_typ]==1.] pos0 = mu0[s0.b_pos].reshape(-1, 3)[active0] pos1 = mu1[s1.b_pos].reshape(-1, 3)[active1] rad0 = mu0[s0.b_rad][active0] rad1 = mu1[s1.b_rad][active1] link = analyze.nearest(pos0, pos1) dpos = pos0 - pos1[link] drad = rad0 - rad1[link] drift = dpos.mean(axis=0) log.info('drift {}'.format(drift)) dpos -= drift fig = pl.figure(figsize=(24, 10)) #========================================================================= #========================================================================= gs0 = ImageGrid(fig, rect=[0.02, 0.4, 0.4, 0.60], nrows_ncols=(2, 3), axes_pad=0.1) lbl(gs0[0], 'A') for i, slicer in enumerate([slicer1, slicer2]): ax_real = gs0[3 * i + 0] ax_fake = gs0[3 * i + 1] ax_diff = gs0[3 * i + 2] diff0 = s0.get_model_image() - s0.image diff1 = s1.get_model_image() - s1.image a = (s0.image - s1.image) b = (s0.get_model_image() - s1.get_model_image()) c = (diff0 - diff1) ptp = 0.7 * max([np.abs(a).max(), np.abs(b).max(), np.abs(c).max()]) cmap = pl.cm.RdBu_r ax_real.imshow(a[slicer], cmap=cmap, vmin=-ptp, vmax=ptp) ax_real.set_xticks([]) ax_real.set_yticks([]) ax_fake.imshow(b[slicer], cmap=cmap, vmin=-ptp, vmax=ptp) ax_fake.set_xticks([]) ax_fake.set_yticks([]) ax_diff.imshow(c[slicer], cmap=cmap, vmin=-ptp, vmax=ptp) #cmap=pl.cm.RdBu, vmin=-1.0, vmax=1.0) ax_diff.set_xticks([]) ax_diff.set_yticks([]) if i == 0: ax_real.set_title(r"$\Delta$ Confocal image", fontsize=24) ax_fake.set_title(r"$\Delta$ Model image", fontsize=24) ax_diff.set_title(r"$\Delta$ Difference", fontsize=24) ax_real.set_ylabel('x-y') else: ax_real.set_ylabel('x-z') #========================================================================= #========================================================================= gs1 = GridSpec(1, 3, left=0.05, bottom=0.125, right=0.42, top=0.37, wspace=0.15, hspace=0.05) spos0 = std0[s0.b_pos].reshape(-1, 3)[active0] spos1 = std1[s1.b_pos].reshape(-1, 3)[active1] srad0 = std0[s0.b_rad][active0] srad1 = std1[s1.b_rad][active1] def hist(ax, vals, bins, *args, **kwargs): y, x = np.histogram(vals, bins=bins) x = (x[1:] + x[:-1]) / 2 y /= len(vals) ax.plot(x, y, *args, **kwargs) def pp(ind, tarr, tsim, tcrb, var='x'): bins = 10**np.linspace(-3, 0.0, 30) bin2 = 10**np.linspace(-3, 0.0, 100) bins = np.linspace(0.0, 0.2, 30) bin2 = np.linspace(0.0, 0.2, 100) xlim = (0.0, 0.12) #xlim = (1e-3, 1e0) ylim = (1e-2, 30) ticks = ticker.FuncFormatter( lambda x, pos: '{:0.0f}'.format(np.log10(x))) scaler = lambda x: x #np.log10(x) ax_crb = pl.subplot(gs1[0, ind]) ax_crb.hist(scaler(np.abs(tarr)), bins=bins, normed=True, alpha=0.7, histtype='stepfilled', lw=1) ax_crb.hist(scaler(np.abs(tcrb)).ravel(), bins=bin2, normed=True, alpha=1.0, histtype='step', ls='solid', lw=1.5, color='k') ax_crb.hist(scaler(np.abs(tsim).ravel()), bins=bin2, normed=True, alpha=1.0, histtype='step', lw=3) ax_crb.set_xlabel(r"$\Delta = |%s(t_1) - %s(t_0)|$" % (var, var), fontsize=24) #ax_crb.semilogx() ax_crb.set_xlim(xlim) #ax_crb.semilogy() #ax_crb.set_ylim(ylim) #ax_crb.xaxis.set_major_formatter(ticks) ax_crb.grid(b=False, which='both', axis='both') if ind == 0: lbl(ax_crb, 'B') ax_crb.set_ylabel(r"$P(\Delta)$") else: ax_crb.set_yticks([]) ax_crb.locator_params(axis='x', nbins=3) f, g = 1.5, 1.95 sim = f * sim_crb_diff(spos0[:, 1], spos1[:, 1][link]) crb = g * sim_crb_diff(crb0[0][:, 1][active0], crb1[0][:, 1][active1][link]) pp(0, dpos[:, 1], sim, crb, 'x') sim = f * sim_crb_diff(spos0[:, 0], spos1[:, 0][link]) crb = g * sim_crb_diff(crb0[0][:, 0][active0], crb1[0][:, 0][active1][link]) pp(1, dpos[:, 0], sim, crb, 'z') sim = f * sim_crb_diff(srad0, srad1[link]) crb = g * sim_crb_diff(crb0[1][active0], crb1[1][active1][link]) pp(2, drad, sim, crb, 'a') #ax_crb_r.locator_params(axis='both', nbins=3) #gs1.tight_layout(fig) #========================================================================= #========================================================================= gs2 = GridSpec(2, 2, left=0.48, bottom=0.12, right=0.99, top=0.95, wspace=0.35, hspace=0.35) ax_hist = pl.subplot(gs2[0, 0]) ax_hist.hist(std0[s0.b_pos], bins=np.logspace(-3.0, 0, 50), alpha=0.7, label='POS', histtype='stepfilled') ax_hist.hist(std0[s0.b_rad], bins=np.logspace(-3.0, 0, 50), alpha=0.7, label='RAD', histtype='stepfilled') ax_hist.set_xlim((10**-3.0, 1)) ax_hist.semilogx() ax_hist.set_xlabel(r"$\bar{\sigma}$") ax_hist.set_ylabel(r"$P(\bar{\sigma})$") ax_hist.legend(loc='upper right') lbl(ax_hist, 'C') imdiff = ((s0.get_model_image() - s0.image) / s0._sigma_field)[s0.image_mask == 1.].ravel() mu = imdiff.mean() #sig = imdiff.std() #print mu, sig x = np.linspace(-5, 5, 10000) ax_diff = pl.subplot(gs2[0, 1]) ax_diff.plot(x, 1.0 / np.sqrt(2 * np.pi) * np.exp(-(x - mu)**2 / 2), '-', alpha=0.7, color='k', lw=2) ax_diff.hist(imdiff, bins=1000, histtype='step', alpha=0.7, normed=True) ax_diff.semilogy() ax_diff.set_ylabel(r"$P(\delta)$") ax_diff.set_xlabel(r"$\delta = (M_i - d_i)/\sigma_i$") ax_diff.locator_params(axis='x', nbins=5) ax_diff.grid(b=False, which='minor', axis='y') ax_diff.set_xlim(-5, 5) ax_diff.set_ylim(1e-4, 1e0) lbl(ax_diff, 'D') pos = mu0[s0.b_pos].reshape(-1, 3) rad = mu0[s0.b_rad] mask = analyze.trim_box(s0, pos) pos = pos[mask] rad = rad[mask] gx, gy = analyze.gofr(pos, rad, mu0[s0.b_zscale][0], resolution=5e-2, mask_start=0.5) mask = gx < 5 gx = gx[mask] gy = gy[mask] ax_gofr = pl.subplot(gs2[1, 0]) ax_gofr.plot(gx, gy, '-', lw=1) ax_gofr.set_xlabel(r"$r/a$") ax_gofr.set_ylabel(r"$g(r/a)$") ax_gofr.locator_params(axis='both', nbins=5) #ax_gofr.semilogy() lbl(ax_gofr, 'E') gx, gy = analyze.gofr(pos, rad, mu0[s0.b_zscale][0], method='surface') mask = gx < 5 gx = gx[mask] gy = gy[mask] gy[gy <= 0.] = gy[gy > 0].min() ax_gofrs = pl.subplot(gs2[1, 1]) ax_gofrs.plot(gx, gy, '-', lw=1) ax_gofrs.set_xlabel(r"$r/a$") ax_gofrs.set_ylabel(r"$g_{\rm{surface}}(r/a)$") ax_gofrs.locator_params(axis='both', nbins=5) ax_gofrs.grid(b=False, which='minor', axis='y') #ax_gofrs.semilogy() lbl(ax_gofrs, 'F') ylim = ax_gofrs.get_ylim() ax_gofrs.set_ylim(gy.min(), ylim[1])
def crb_rad(state0, samples0, state1, samples1, crb0, crb1): s0 = state0 s1 = state1 h0 = np.array(samples0) h1 = np.array(samples1) mu0 = h0.mean(axis=0) mu1 = h1.mean(axis=0) std0 = h0.std(axis=0) std1 = h1.std(axis=0) mask0 = (s0.state[s0.b_typ] == 1.) & (analyze.trim_box( s0, mu0[s0.b_pos].reshape(-1, 3))) mask1 = (s1.state[s1.b_typ] == 1.) & (analyze.trim_box( s1, mu1[s1.b_pos].reshape(-1, 3))) active0 = np.arange(s0.N)[mask0] #s0.state[s0.b_typ]==1.] active1 = np.arange(s1.N)[mask1] #s1.state[s1.b_typ]==1.] pos0 = mu0[s0.b_pos].reshape(-1, 3)[active0] pos1 = mu1[s1.b_pos].reshape(-1, 3)[active1] rad0 = mu0[s0.b_rad][active0] rad1 = mu1[s1.b_rad][active1] link = analyze.nearest(pos0, pos1) dpos = pos0 - pos1[link] drad = rad0 - rad1[link] spos0 = std0[s0.b_pos].reshape(-1, 3)[active0] spos1 = std1[s1.b_pos].reshape(-1, 3)[active1] srad0 = std0[s0.b_rad][active0] srad1 = std1[s1.b_rad][active1] def pp(ax, tarr, tsim, tcrb, var='x'): bins = 10**np.linspace(-3, 0.0, 30) bin2 = 10**np.linspace(-3, 0.0, 100) bins = np.linspace(0.0, 0.1, 30) bin2 = np.linspace(0.0, 0.1, 100) xlim = (0, 0.1) #xlim = (1e-3, 1e0) ylim = (1e-2, 30) ticks = ticker.FuncFormatter( lambda x, pos: '{:0.0f}'.format(np.log10(x))) scaler = lambda x: x #np.log10(x) ax_crb = ax ax_crb.hist(scaler(np.abs(tarr)), bins=bins, normed=True, alpha=0.7, histtype='stepfilled', lw=1, label='Radii differences') y, x = np.histogram(np.abs(tcrb).ravel(), bins=bin2, normed=True) x = (x[1:] + x[:-1]) / 2 ax_crb.step(x, y, lw=3, color='k', ls='solid', label='CRB') y, x = np.histogram(np.abs(tsim).ravel(), bins=bin2, normed=True) x = (x[1:] + x[:-1]) / 2 ax_crb.step(x, y, lw=3, ls='solid', label='Estimated Error') ax_crb.set_xlabel(r"$\Delta = |%s(t_1) - %s(t_0)|$" % (var, var), fontsize=28) ax_crb.set_ylabel(r"$P(\Delta)$", fontsize=28) ax_crb.set_xlim(xlim) ax_crb.grid(b=False, which='both', axis='both') ax_crb.legend(loc='best', ncol=1) fig = pl.figure() ax = pl.gca() f, g = 1.5, 1.85 sim = f * sim_crb_diff(srad0, srad1[link]) crb = g * sim_crb_diff(crb0[1][active0], crb1[1][active1][link]) pp(ax, drad, sim, crb, 'a')