Exemple #1
0
def geweke_test(K, N_iter=10000):
    """
    """
    # Create a multinomial distribution
    mu = np.zeros(K-1)
    mu[-1] = 1
    Sigma = np.eye(K-1)
    pgm = PGMultinomial(K, mu=mu, Sigma=Sigma)

    # Run a Geweke test
    xs = []
    samples = []
    for itr in range(N_iter):
        if itr % 10 == 0:
            print("Iteration ", itr)
        # Resample the data
        x = pgm.rvs(10)

        # Resample the PG-Multinomial parameters
        pgm.resample(x)

        # Update our samples
        xs.append(x.copy())
        samples.append(pgm.copy_sample())

    # Check that the PG-Multinomial samples are distributed like the prior
    psi_samples = np.array([s.psi for s in samples])
    psi_mean = psi_samples.mean(0)
    psi_std  = psi_samples.std(0)
    print("Mean bias: ", psi_mean, " +- ", psi_std)

    # Make Q-Q plots
    ind = K-2
    fig = plt.figure()
    ax = fig.add_subplot(121)
    psi_dist = norm(mu[ind], np.sqrt(Sigma[ind,ind]))
    probplot(psi_samples[:,ind], dist=psi_dist, plot=ax)

    fig.add_subplot(122)
    _, bins, _ = plt.hist(psi_samples[:,ind], 20, normed=True, alpha=0.2)
    bincenters = 0.5*(bins[1:]+bins[:-1])
    plt.plot(bincenters, psi_dist.pdf(bincenters), 'r--', linewidth=1)
    plt.show()
Exemple #2
0
def test_pgm_rvs():
    K = 10
    mu, sig = compute_uniform_mean_psi(K, sigma=2)
    # mu = np.zeros(K-1)
    # sig = np.ones(K-1)
    print("mu:  ", mu)
    print("sig: ", sig)

    Sigma = np.diag(sig)

    # Add some covariance
    # Sigma[:5,:5] = 1.0 + 1e-3*np.random.randn(5,5)

    # Sample a bunch of pis and look at the marginals
    pgm = PGMultinomial(K, mu=mu, Sigma=Sigma)
    samples = 10000
    pis = []
    for smpl in xrange(samples):
        pgm.resample()
        pis.append(pgm.pi)
    pis = np.array(pis)

    print("E[pi]:   ", pis.mean(axis=0))
    print("var[pi]: ", pis.var(axis=0))

    plt.figure()
    plt.subplot(121)
    plt.boxplot(pis)
    plt.xlabel("k")
    plt.ylabel("$p(\pi_k)$")

    # Plot the covariance
    cov = np.cov(pis.T)
    plt.subplot(122)
    plt.imshow(cov, interpolation="None", cmap="cool")
    plt.colorbar()
    plt.title("Cov($\pi$)")
    plt.show()
Exemple #3
0
def test_pgm_rvs():
    K = 10
    mu, sig = compute_uniform_mean_psi(K, sigma=2)
    # mu = np.zeros(K-1)
    # sig = np.ones(K-1)
    print("mu:  ", mu)
    print("sig: ", sig)

    Sigma = np.diag(sig)

    # Add some covariance
    # Sigma[:5,:5] = 1.0 + 1e-3*np.random.randn(5,5)

    # Sample a bunch of pis and look at the marginals
    pgm = PGMultinomial(K, mu=mu, Sigma=Sigma)
    samples = 10000
    pis = []
    for smpl in range(samples):
        pgm.resample()
        pis.append(pgm.pi)
    pis = np.array(pis)

    print("E[pi]:   ", pis.mean(axis=0))
    print("var[pi]: ", pis.var(axis=0))

    plt.figure()
    plt.subplot(121)
    plt.boxplot(pis)
    plt.xlabel("k")
    plt.ylabel("$p(\pi_k)$")

    # Plot the covariance
    cov = np.cov(pis.T)
    plt.subplot(122)
    plt.imshow(cov, interpolation="None", cmap="cool")
    plt.colorbar()
    plt.title("Cov($\pi$)")
    plt.show()
Exemple #4
0
def geweke_test(K, N_iter=10000):
    """
    """
    # Create a multinomial distribution
    mu = np.zeros(K - 1)
    mu[-1] = 1
    Sigma = np.eye(K - 1)
    pgm = PGMultinomial(K, mu=mu, Sigma=Sigma)

    # Run a Geweke test
    xs = []
    samples = []
    for itr in xrange(N_iter):
        if itr % 10 == 0:
            print("Iteration ", itr)
        # Resample the data
        x = pgm.rvs(10)

        # Resample the PG-Multinomial parameters
        pgm.resample(x)

        # Update our samples
        xs.append(x.copy())
        samples.append(pgm.copy_sample())

    # Check that the PG-Multinomial samples are distributed like the prior
    psi_samples = np.array([s.psi for s in samples])
    psi_mean = psi_samples.mean(0)
    psi_std = psi_samples.std(0)
    print("Mean bias: ", psi_mean, " +- ", psi_std)

    # Make Q-Q plots
    ind = K - 2
    fig = plt.figure()
    ax = fig.add_subplot(121)
    psi_dist = norm(mu[ind], np.sqrt(Sigma[ind, ind]))
    probplot(psi_samples[:, ind], dist=psi_dist, plot=ax)

    fig.add_subplot(122)
    _, bins, _ = plt.hist(psi_samples[:, ind], 20, normed=True, alpha=0.2)
    bincenters = 0.5 * (bins[1:] + bins[:-1])
    plt.plot(bincenters, psi_dist.pdf(bincenters), 'r--', linewidth=1)
    plt.show()