def __init__(self, config, device="cpu"):
        """
        :param config: config dictionary
        :param device: the device used to train the network
        """
        self.config = config
        self.train_config = config["training"]
        self.input_config = config["input"]
        self.best_metric = 0
        # np.random.seed(config["random_seed"])

        self.__window_size = self.input_config["window_size"]
        self.__coin_number = self.input_config["coin_number"]
        self.__batch_size = self.train_config["batch_size"]

        self._matrix = DataMatrices.create_from_config(config)
        self.stock_code = self._matrix.stock_code

        self.test_set = self._matrix.get_test_set()
        # if not config["training"]["fast_train"]:
        self.training_set = self._matrix.get_training_set()
        self.upperbound_validation = 1
        self.upperbound_test = 1
        # tf.set_random_seed(self.config["random_seed"])
        self.device = device
        if device == "cpu":
            os.environ["CUDA_VISIBLE_DEVICES"] = ""
            with tf.device("/cpu:0"):
                self._agent = NNAgent(config, device)
        else:
            self._agent = NNAgent(config, device)
    def __init__(self,
                 config,
                 main_config,
                 fake_data=False,
                 restore_dir=None,
                 save_path=None,
                 device="cpu",
                 agent=None,
                 index=None):
        """
        :param config: config dictionary
        :param fake_data: if True will use data generated randomly
        :param restore_dir: path to the model trained before
        :param save_path: path to save the model
        :param device: the device used to train the network
        :param agent: the nnagent object. If this is provides, the trainer will not
        create a new agent by itself. Therefore the restore_dir will not affect anything.
        """

        self._matrix = DataMatrices.create_from_config(config)
        self._coin_number = self._matrix.coin_number()
        config['input']['coin_number'] = self._coin_number

        self.config = config
        self.train_config = config["training"]
        self.input_config = config["input"]
        self.save_path = save_path
        self.best_metric = 0
        np.random.seed(config["random_seed"])

        self.__window_size = self.input_config["window_size"]

        self.__batch_size = self.train_config["batch_size"]
        self.__snap_shot = self.train_config["snap_shot"]
        config["input"]["fake_data"] = fake_data

        self._asset_list = self._matrix.coin_list
        self._time_index = self._matrix.global_weights.index
        self._test_portion = self.input_config["test_portion"]

        self.test_set = self._matrix.get_test_set()
        if not config["training"]["fast_train"]:
            self.training_set = self._matrix.get_training_set()
        self.upperbound_validation = 1
        self.upperbound_test = 1
        tf.set_random_seed(self.config["random_seed"])
        self.device = device
        if agent:
            self._agent = agent
        else:
            if device == "cpu":
                os.environ["CUDA_VISIBLE_DEVICES"] = ""
                with tf.device("/cpu:0"):
                    self._agent = NNAgent(config, restore_dir, device)
            else:
                self._agent = NNAgent(config, restore_dir, device)
    def __init__(self,
                 config,
                 fake_data=False,
                 restore_dir=None,
                 save_path=None,
                 device="cpu",
                 agent=None):
        """
        :param config: config dictionary
        :param fake_data: if True will use data generated randomly
        :param restore_dir: path to the model trained before
        :param save_path: path to save the model
        :param device: the device used to train the network
        :param agent: the nnagent object. If this is provides, the trainer will not
        create a new agent by itself. Therefore the restore_dir will not affect anything.
        """
        self.config = config
        self.train_config = config["training"]
        self.input_config = config["input"]
        self.save_path = save_path
        self.best_metric = 0
        np.random.seed(config["random_seed"])

        self.__window_size = self.input_config["window_size"]
        self.__coin_number = self.input_config["coin_number"]
        self.__batch_size = self.train_config["batch_size"]
        self.__snap_shot = self.train_config["snap_shot"]
        config["input"]["fake_data"] = fake_data

        #creates Datamatrices from net_config.json
        self._matrix = DataMatrices.create_from_config(config)

        #:test set :-windowsize+1
        self.test_set = self._matrix.get_test_set()
        #fast train: true without pre-training
        if not config["training"]["fast_train"]:
            self.training_set = self._matrix.get_training_set()
        self.training_set = self._matrix.get_training_set()
        self.upperbound_validation = 1
        self.upperbound_test = 1
        tf.set_random_seed(self.config["random_seed"])
        self.device = device
        #needed for backtetst
        if agent:
            self._agent = agent
        else:
            #first run else is used to initialize NNAgent
            if device == "cpu":
                os.environ["CUDA_VISIBLE_DEVICES"] = ""
                with tf.device("/cpu:0"):
                    self._agent = NNAgent(config, restore_dir, device)
            else:
                self._agent = NNAgent(config, restore_dir, device)
    def train_net(self, log_file_dir="./tensorboard", index="0"):
        """
        :param log_file_dir: logging of the training process
        :param index: sub-folder name under train_package
        :return: the result named tuple
        """
        self.__print_upperbound()
        if log_file_dir:
            if self.device == "cpu":
                with tf.device("/cpu:0"):
                    self.__init_tensor_board(log_file_dir)  #初始化summary
            else:
                self.__init_tensor_board(log_file_dir)
        starttime = time.time()

        total_data_time = 0
        total_training_time = 0
        for i in range(self.train_config["steps"]):  #训练步数
            step_start = time.time()
            x, y, last_w, setw = self.next_batch(
            )  #获取batch x:(109, 3, 11, 31) y:(109, 3, 11) last_w: (109,11) setw:function
            if 'noise' in self.train_config:
                if self.train_config['noise']:
                    noise = np.random.normal(0, 0.002, size=y.shape)
                    y = y + noise
            finish_data = time.time()
            total_data_time += (finish_data - step_start)
            #训练智能体
            self._agent.train(x, y, last_w=last_w, setw=setw)
            total_training_time += time.time() - finish_data
            if i % 50 == 0 and log_file_dir:
                logging.info("average time for data accessing is %s" %
                             (total_data_time / 50))
                logging.info("average time for training is %s" %
                             (total_training_time / 50))
                total_training_time = 0
                total_data_time = 0
                #每隔固定的步数对测试集进行评估
                self.log_between_steps(i)

        if self.save_path:
            self._agent.recycle()  #
            best_agent = NNAgent(self.config,
                                 self.stockList,
                                 self.featureList,
                                 restore_dir=self.save_path)
            self._agent = best_agent

        pv, log_mean = self._evaluate("test", self._agent.portfolio_value,
                                      self._agent.log_mean)  #最后在评估一下
        #logging.warning('the portfolio value train No.%s is %s log_mean is %s,'
        # ' the training time is %d seconds' % (index, pv, log_mean, time.time() - starttime))

        return self.__log_result_csv(index,
                                     time.time() - starttime, self.save_path)
    def __init__(self, config, fake_data=False, restore_dir=None, save_path=None, device="cpu",
                 agent=None):
        """
        :param config: config dictionary
        :param fake_data: if True will use data generated randomly
        :param restore_dir: path to the model trained before
        :param save_path: path to save the model
        :param device: the device used to train the network
        :param agent: the nnagent object. If this is provides, the trainer will not
        create a new agent by itself. Therefore the restore_dir will not affect anything.
        """
        self.config = config
        self.train_config = config["training"]
        self.input_config = config["input"]
        self.save_path = save_path
        self.best_metric = 0
        np.random.seed(config["random_seed"])

        self.__window_size = self.input_config["window_size"]
        self.__coin_number = self.input_config["coin_number"]
        self.__batch_size = self.train_config["batch_size"]
        self.__snap_shot = self.train_config["snap_shot"]
        config["input"]["fake_data"] = fake_data

        self._matrix = DataMatrices.create_from_config(config)

        self.test_set = self._matrix.get_test_set()
        if not config["training"]["fast_train"]:
            self.training_set = self._matrix.get_training_set()
        self.upperbound_validation = 1
        self.upperbound_test = 1
        tf.set_random_seed(self.config["random_seed"])
        self.device = device
        if agent:
            self._agent = agent
        else:
            if device == "cpu":
                os.environ["CUDA_VISIBLE_DEVICES"] = ""
                with tf.device("/cpu:0"):
                    self._agent = NNAgent(config, restore_dir, device)
            else:
                self._agent = NNAgent(config, restore_dir, device)
    def train_net(self, log_file_dir="./tensorboard", index="0"):
        """
        :param log_file_dir: logging of the training process
        :param index: sub-folder name under train_package
        :return: the result named tuple
        """
        self.__print_upperbound()
        if log_file_dir:
            if self.device == "cpu":
                with tf.device("/cpu:0"):
                    self.__init_tensor_board(log_file_dir)
            else:
                self.__init_tensor_board(log_file_dir)
        starttime = time.time()

        total_data_time = 0
        total_training_time = 0
        for i in range(self.train_config["steps"]):
            step_start = time.time()
            x, y, last_w, setw = self.next_batch()
            finish_data = time.time()
            total_data_time += (finish_data - step_start)
            self._agent.train(x, y, last_w=last_w, setw=setw)
            total_training_time += time.time() - finish_data
            if i % 1000 == 0 and log_file_dir:
                logging.info("average time for data accessing is %s" %
                             (total_data_time / 1000))
                logging.info("average time for training is %s" %
                             (total_training_time / 1000))
                total_training_time = 0
                total_data_time = 0
                self.log_between_steps(i)  # Train step by 1000

        if self.save_path:
            self._agent.recycle()
            best_agent = NNAgent(self.config, restore_dir=self.save_path)
            self._agent = best_agent

        pv, log_mean = self._evaluate("test", self._agent.portfolio_value,
                                      self._agent.log_mean)
        logging.warning('the portfolio value train No.%s is %s log_mean is %s,'
                        ' the training time is %d seconds' %
                        (index, pv, log_mean, time.time() - starttime))

        return self.__log_result_csv(
            index,
            time.time() - starttime)  # save results in train_summary.csv
Exemple #7
0
class TraderTrainer:
    def __init__(self, config, fake_data=False, restore_dir=None, save_path=None, device="cpu",
                 agent=None):
        """
        :param config: config dictionary
        :param fake_data: if True will use data generated randomly 
        :param restore_dir: path to the model trained before
        :param save_path: path to save the model
        :param device: the device used to train the network
        :param agent: the nnagent object. If this is provides, the trainer will not
        create a new agent by itself. Therefore the restore_dir will not affect anything.
        """
        self.config = config
        self.train_config = config["training"]
        self.input_config = config["input"]
        self.save_path = save_path
        self.best_metric = 0
        np.random.seed(config["random_seed"])

        self.__window_size = self.input_config["window_size"]
        self.__coin_number = self.input_config["coin_number"]
        self.__batch_size = self.train_config["batch_size"]
        self.__snap_shot = self.train_config["snap_shot"]
        config["input"]["fake_data"] = fake_data

        self._matrix = DataMatrices.create_from_config(config)   # obtain global_data
        self.test_set = self._matrix.get_test_set()    # obtain test_data 
        if not config["training"]["fast_train"]:
            self.training_set = self._matrix.get_training_set()     # obtain training_data 
        self.upperbound_validation = 1
        self.upperbound_test = 1
        tf.set_random_seed(self.config["random_seed"])
        self.device = device
        if agent:
            self._agent = agent
        else:
            if device == "cpu":
                os.environ["CUDA_VISIBLE_DEVICES"] = ""
                with tf.device("/cpu:0"):
                    self._agent = NNAgent(config, restore_dir, device)
            else:
                self._agent = NNAgent(config, restore_dir, device)

    def _evaluate(self, set_name, *tensors): 
        if set_name == "test":
            feed = self.test_set
        elif set_name == "training":
            feed = self.training_set
        else:
            raise ValueError()       
        result = self._agent.evaluate_tensors(feed["X"],feed["y"],last_w=feed["last_w"],
                                              setw=feed["setw"], tensors=tensors)
        return result

    @staticmethod
    def calculate_upperbound(y): 
        array = np.maximum.reduce(y[:, 0, :], 1)   
        #print("array",array) 
        total = 1.0
        for i in array:
            total = total * i
        return total

    def log_between_steps(self, step):
        # log the information per step
        fast_train = self.train_config["fast_train"]
        tflearn.is_training(False, self._agent.session)

        summary, v_pv, v_log_mean, v_loss, log_mean_free, weights= \
            self._evaluate("test", self.summary,
                           self._agent.portfolio_value,
                           self._agent.log_mean,
                           self._agent.loss,
                           self._agent.log_mean_free,
                           self._agent.portfolio_weights)  
        self.test_writer.add_summary(summary, step)

        if not fast_train:
            summary, loss_value = self._evaluate("training", self.summary, self._agent.loss)
            self.train_writer.add_summary(summary, step)
            # fast_train is ued to control the output of tensorboard. 

        # print 'ouput is %s' % out
        logging.info('='*30)
        logging.info('step %d' % step)
        logging.info('-'*30)
        if not fast_train:
            logging.info('training loss is %s\n' % loss_value)
        logging.info('the portfolio value on test set is %s\nlog_mean is %s\n'
                     'loss_value is %3f\nlog mean without commission fee is %3f\n' % \
                     (v_pv, v_log_mean, v_loss, log_mean_free))
        logging.info('='*30+"\n")

        if not self.__snap_shot:
            self._agent.save_model(self.save_path)
        elif v_pv > self.best_metric:
            self.best_metric = v_pv
            logging.info("get better model at %s steps,"
                         " whose test portfolio value is %s" % (step, v_pv))
            if self.save_path:
                self._agent.save_model(self.save_path)
        self.check_abnormal(v_pv, weights)

    def check_abnormal(self, portfolio_value, weigths): 
        if portfolio_value == 1.0:
            logging.info("average portfolio weights {}".format(weigths.mean(axis=0)))


    def next_batch(self): 
        batch = self._matrix.next_batch()   # sampling batch based on experience
        batch_input = batch["X"]             
        batch_y = batch["y"]                
        batch_last_w = batch["last_w"]      
        batch_w = batch["setw"]
        return batch_input, batch_y, batch_last_w, batch_w

    def __init_tensor_board(self, log_file_dir):       
        tf.summary.scalar('benefit', self._agent.portfolio_value)
        tf.summary.scalar('log_mean', self._agent.log_mean)
        tf.summary.scalar('loss', self._agent.loss)
        tf.summary.scalar("log_mean_free", self._agent.log_mean_free)
        for layer_key in self._agent.layers_dict:
            tf.summary.histogram(layer_key, self._agent.layers_dict[layer_key])
        for var in tf.trainable_variables():
            tf.summary.histogram(var.name, var)
        #grads = tf.gradients(self._agent.loss, tf.trainable_variables())
        #for grad in grads:
        #    tf.summary.histogram(grad.name + '/gradient', grad)
        self.summary = tf.summary.merge_all()
        location = log_file_dir
        self.network_writer = tf.summary.FileWriter(location + '/network',
                                                    self._agent.session.graph)
        self.test_writer = tf.summary.FileWriter(location + '/test')
        self.train_writer = tf.summary.FileWriter(location + '/train')

    def __print_upperbound(self): 
        upperbound_test = self.calculate_upperbound(self.test_set["y"])
        logging.info("upper bound in test is %s" % upperbound_test)

    def train_net(self, log_file_dir="./tensorboard", index="0"):
        """ 
        :param log_file_dir: logging of the training process
        :param index: sub-folder name under train_package
        :return: the result named tuple
        """
        self.__print_upperbound()
        if log_file_dir:
            if self.device == "cpu":
                with tf.device("/cpu:0"):
                    self.__init_tensor_board(log_file_dir)
            else:
                self.__init_tensor_board(log_file_dir)
        starttime = time.time()

        total_data_time = 0
        total_training_time = 0
        for i in range(self.train_config["steps"]):
            step_start = time.time()
            x, y, last_w, setw = self.next_batch()
            finish_data = time.time()
            total_data_time += (finish_data - step_start)
            self._agent.train(x, y, last_w=last_w, setw=setw)
            total_training_time += time.time() - finish_data
            if i % 1000 == 0 and log_file_dir:
                logging.info("average time for data accessing is %s"%(total_data_time/1000))
                logging.info("average time for training is %s"%(total_training_time/1000))
                total_training_time = 0
                total_data_time = 0
                self.log_between_steps(i)   # log the information every 1000 rounds

        if self.save_path:
            self._agent.recycle()
            best_agent = NNAgent(self.config, restore_dir=self.save_path)
            self._agent = best_agent

        pv, log_mean = self._evaluate("test", self._agent.portfolio_value, self._agent.log_mean) # execute test once
        logging.warning('the portfolio value train No.%s is %s log_mean is %s,'
                        ' the training time is %d seconds' % (index, pv, log_mean, time.time() - starttime))

        return self.__log_result_csv(index, time.time() - starttime)   

    def __log_result_csv(self, index, time): 
        #  execute backtest, and save the result in train_summary.csv 
        from pgportfolio.trade import backtest
        dataframe = None
        csv_dir = './train_package/train_summary.csv'    
        tflearn.is_training(False, self._agent.session)
        v_pv, v_log_mean, benefit_array, v_log_mean_free, v_turn_over =\
            self._evaluate("test",
                           self._agent.portfolio_value,
                           self._agent.log_mean,
                           self._agent.pv_vector,
                           self._agent.log_mean_free,
                           self._agent.turn_over)  

        backtest = backtest.BackTest(self.config.copy(),
                                     net_dir=None,
                                     agent=self._agent)

        backtest.start_trading()
        result = Result(test_pv=[v_pv],
                        test_log_mean=[v_log_mean],
                        test_log_mean_free=[v_log_mean_free],
                        test_history=[''.join(str(e)+', ' for e in benefit_array)],
                        test_turn_over = [v_turn_over],
                        config=[json.dumps(self.config)],
                        net_dir=[index],
                        backtest_test_pv=[backtest.test_pv],
                        backtest_test_history=[''.join(str(e)+', ' for e in backtest.test_pc_vector)],
                        backtest_test_log_mean=[np.mean(np.log(backtest.test_pc_vector))],
                        backtest_turn_over = [backtest.turn_over],
                        training_time=int(time))
        new_data_frame = pd.DataFrame(result._asdict()).set_index("net_dir")
        if os.path.isfile(csv_dir):
            dataframe = pd.read_csv(csv_dir).set_index("net_dir")
            dataframe = dataframe.append(new_data_frame)
        else:
            dataframe = new_data_frame
        if int(index) > 0:
            dataframe.to_csv(csv_dir)
        return result
    def __init__(self,
                 config,
                 stockList,
                 featureList,
                 start_date,
                 end_date,
                 fake_data=False,
                 restore_dir=None,
                 save_path=None,
                 device="cpu",
                 agent=None):
        """
        :param config: config dictionary
        :param fake_data: if True will use data generated randomly
        :param restore_dir: path to the model trained before
        :param save_path: path to save the model
        :param device: the device used to train the network
        :param agent: the nnagent object. If this is provides, the trainer will not
        create a new agent by itself. Therefore the restore_dir will not affect anything.
        """
        self.config = config
        self.train_config = config["training"]
        self.input_config = config["input"]
        self.save_path = save_path
        self.best_metric = 0
        np.random.seed(config["random_seed"])

        self.__window_size = self.input_config["window_size"]
        self.__batch_size = self.train_config["batch_size"]
        self.__snap_shot = self.train_config["snap_shot"]
        config["input"]["fake_data"] = fake_data

        self.stockList = stockList
        self.featureList = featureList
        self.start_date = start_date
        self.end_date = end_date
        self.fake_data = fake_data

        self._matrix = DataMatrices.create_from_config(config, stockList,
                                                       featureList, start_date,
                                                       end_date)  #数据
        self.test_set = self._matrix.get_test_set(
        )  #测试集 dict:{'X', 'y', 'last_w', 'setw'}
        # X: (260, 4, 3, 31), y: (260, 4, 3), last_w: (260, 3)
        # X: (test_length, feature_num, stock_num, time_windows)
        if not config["training"]["fast_train"]:
            self.training_set = self._matrix.get_training_set()  #训练集
        self.upperbound_validation = 1
        self.upperbound_test = 1
        tf.set_random_seed(self.config["random_seed"])
        self.device = device
        if agent:
            self._agent = agent
        else:
            if device == "cpu":
                os.environ["CUDA_VISIBLE_DEVICES"] = ""
                with tf.device("/cpu:0"):
                    self._agent = NNAgent(config, stockList, featureList,
                                          restore_dir, device)
            else:
                self._agent = NNAgent(config, stockList, featureList,
                                      restore_dir, device)
class TraderTrainer:
    def __init__(self,
                 config,
                 stockList,
                 featureList,
                 start_date,
                 end_date,
                 fake_data=False,
                 restore_dir=None,
                 save_path=None,
                 device="cpu",
                 agent=None):
        """
        :param config: config dictionary
        :param fake_data: if True will use data generated randomly
        :param restore_dir: path to the model trained before
        :param save_path: path to save the model
        :param device: the device used to train the network
        :param agent: the nnagent object. If this is provides, the trainer will not
        create a new agent by itself. Therefore the restore_dir will not affect anything.
        """
        self.config = config
        self.train_config = config["training"]
        self.input_config = config["input"]
        self.save_path = save_path
        self.best_metric = 0
        np.random.seed(config["random_seed"])

        self.__window_size = self.input_config["window_size"]
        self.__batch_size = self.train_config["batch_size"]
        self.__snap_shot = self.train_config["snap_shot"]
        config["input"]["fake_data"] = fake_data

        self.stockList = stockList
        self.featureList = featureList
        self.start_date = start_date
        self.end_date = end_date
        self.fake_data = fake_data

        self._matrix = DataMatrices.create_from_config(config, stockList,
                                                       featureList, start_date,
                                                       end_date)  #数据
        self.test_set = self._matrix.get_test_set(
        )  #测试集 dict:{'X', 'y', 'last_w', 'setw'}
        # X: (260, 4, 3, 31), y: (260, 4, 3), last_w: (260, 3)
        # X: (test_length, feature_num, stock_num, time_windows)
        if not config["training"]["fast_train"]:
            self.training_set = self._matrix.get_training_set()  #训练集
        self.upperbound_validation = 1
        self.upperbound_test = 1
        tf.set_random_seed(self.config["random_seed"])
        self.device = device
        if agent:
            self._agent = agent
        else:
            if device == "cpu":
                os.environ["CUDA_VISIBLE_DEVICES"] = ""
                with tf.device("/cpu:0"):
                    self._agent = NNAgent(config, stockList, featureList,
                                          restore_dir, device)
            else:
                self._agent = NNAgent(config, stockList, featureList,
                                      restore_dir, device)

    def _evaluate(self, set_name, *tensors):
        if set_name == "test":
            feed = self.test_set
        elif set_name == "training":
            feed = self.training_set
        else:
            raise ValueError()
        result = self._agent.evaluate_tensors(feed["X"],
                                              feed["y"],
                                              last_w=feed["last_w"],
                                              setw=feed["setw"],
                                              tensors=tensors)
        # len: 6, result[5]: (260,4)
        # 计算的是tensors的值,有几个tensor就相应的有几个输出
        return result

    @staticmethod
    def calculate_upperbound(y):
        array = np.maximum.reduce(y[:, 0, :], 1)  #第1维的最大值
        total = 1.0
        for i in array:
            total = total * i
        return total

    def log_between_steps(self, step):
        fast_train = self.train_config["fast_train"]
        tflearn.is_training(False, self._agent.session)

        summary, v_pv, v_log_mean, v_loss, log_mean_free, weights= \
            self._evaluate("test", self.summary,
                           self._agent.portfolio_value,
                           self._agent.log_mean,
                           self._agent.loss,
                           self._agent.log_mean_free,
                           self._agent.portfolio_weights)
        self.test_writer.add_summary(summary, step)
        if not fast_train:
            summary, loss_value = self._evaluate("training", self.summary,
                                                 self._agent.loss)
            self.train_writer.add_summary(summary, step)

        # print 'ouput is %s' % out
        logging.info('=' * 30)
        logging.info('step %d' % step)
        logging.info('-' * 30)
        if not fast_train:
            logging.info('training loss is %s\n' % loss_value)
        logging.info('the portfolio value on test set is %s\nlog_mean is %s\n'
                     'loss_value is %3f\nlog mean without commission fee is %3f\n' % \
                     (v_pv, v_log_mean, v_loss, log_mean_free))
        logging.info('=' * 30 + "\n")

        if not self.__snap_shot:
            self._agent.save_model(self.save_path)
        elif v_pv > self.best_metric:
            self.best_metric = v_pv
            logging.info("get better model at %s steps,"
                         " whose test portfolio value is %s" % (step, v_pv))
            if self.save_path:
                self._agent.save_model(self.save_path)
        self.check_abnormal(v_pv, weights)

    def check_abnormal(self, portfolio_value, weigths):
        if portfolio_value == 1.0:
            logging.info("average portfolio weights {}".format(
                weigths.mean(axis=0)))

    def next_batch(self):
        batch = self._matrix.next_batch()
        batch_input = batch["X"]
        batch_y = batch["y"]
        batch_last_w = batch["last_w"]
        batch_w = batch["setw"]
        return batch_input, batch_y, batch_last_w, batch_w

    def __init_tensor_board(self, log_file_dir):
        tf.summary.scalar('benefit', self._agent.portfolio_value)
        tf.summary.scalar('log_mean', self._agent.log_mean)
        tf.summary.scalar('loss', self._agent.loss)
        tf.summary.scalar("log_mean_free", self._agent.log_mean_free)
        for layer_key in self._agent.layers_dict:
            tf.summary.histogram(layer_key, self._agent.layers_dict[layer_key])
        for var in tf.trainable_variables():
            tf.summary.histogram(var.name, var)
        grads = tf.gradients(self._agent.loss, tf.trainable_variables())
        for grad in grads:
            tf.summary.histogram(grad.name + '/gradient', grad)
        self.summary = tf.summary.merge_all()
        location = log_file_dir
        self.network_writer = tf.summary.FileWriter(location + '/network',
                                                    self._agent.session.graph)
        self.test_writer = tf.summary.FileWriter(location + '/test')  #保存的是训练结果
        self.train_writer = tf.summary.FileWriter(location + '/train')

    def __print_upperbound(self):
        upperbound_test = self.calculate_upperbound(self.test_set["y"])  #都乘起来
        logging.info("upper bound in test is %s" % upperbound_test)

    def train_net(self, log_file_dir="./tensorboard", index="0"):
        """
        :param log_file_dir: logging of the training process
        :param index: sub-folder name under train_package
        :return: the result named tuple
        """
        self.__print_upperbound()
        if log_file_dir:
            if self.device == "cpu":
                with tf.device("/cpu:0"):
                    self.__init_tensor_board(log_file_dir)  #初始化summary
            else:
                self.__init_tensor_board(log_file_dir)
        starttime = time.time()

        total_data_time = 0
        total_training_time = 0
        for i in range(self.train_config["steps"]):  #训练步数
            step_start = time.time()
            x, y, last_w, setw = self.next_batch(
            )  #获取batch x:(109, 3, 11, 31) y:(109, 3, 11) last_w: (109,11) setw:function
            if 'noise' in self.train_config:
                if self.train_config['noise']:
                    noise = np.random.normal(0, 0.002, size=y.shape)
                    y = y + noise
            finish_data = time.time()
            total_data_time += (finish_data - step_start)
            #训练智能体
            self._agent.train(x, y, last_w=last_w, setw=setw)
            total_training_time += time.time() - finish_data
            if i % 50 == 0 and log_file_dir:
                logging.info("average time for data accessing is %s" %
                             (total_data_time / 50))
                logging.info("average time for training is %s" %
                             (total_training_time / 50))
                total_training_time = 0
                total_data_time = 0
                #每隔固定的步数对测试集进行评估
                self.log_between_steps(i)

        if self.save_path:
            self._agent.recycle()  #
            best_agent = NNAgent(self.config,
                                 self.stockList,
                                 self.featureList,
                                 restore_dir=self.save_path)
            self._agent = best_agent

        pv, log_mean = self._evaluate("test", self._agent.portfolio_value,
                                      self._agent.log_mean)  #最后在评估一下
        #logging.warning('the portfolio value train No.%s is %s log_mean is %s,'
        # ' the training time is %d seconds' % (index, pv, log_mean, time.time() - starttime))

        return self.__log_result_csv(index,
                                     time.time() - starttime, self.save_path)

    def __log_result_csv(self, index, time, path):
        from pgportfolio.trade import backtest
        dataframe = None
        csv_dir = './train_package/train_summary.csv'
        tflearn.is_training(False, self._agent.session)
        v_pv, v_log_mean, benefit_array, v_log_mean_free = self._evaluate("test", self._agent.portfolio_value,\
                                                           self._agent.log_mean, self._agent.pv_vector,\
                                                           self._agent.log_mean_free)

        backtest = backtest.BackTest(self.config.copy(),
                                     self.stockList,
                                     self.featureList,
                                     self.start_date,
                                     self.end_date,
                                     self.fake_data,
                                     net_dir=None,
                                     result_path=path,
                                     agent=self._agent)  # 回测

        backtest.start_trading()
        result = Result(
            test_pv=[v_pv],
            test_log_mean=[v_log_mean],
            test_log_mean_free=[v_log_mean_free],
            test_history=[''.join(str(e) + ', ' for e in benefit_array)],
            config=[json.dumps(self.config)],
            net_dir=[index],
            backtest_test_pv=[backtest.test_pv],
            backtest_test_history=[
                ''.join(str(e) + ', ' for e in backtest.test_pc_vector)
            ],
            backtest_test_log_mean=[np.mean(np.log(backtest.test_pc_vector))],
            training_time=int(time))
        new_data_frame = pd.DataFrame(result._asdict()).set_index("net_dir")
        if os.path.isfile(csv_dir):
            dataframe = pd.read_csv(csv_dir).set_index("net_dir")
            dataframe = dataframe.append(new_data_frame)
        else:
            dataframe = new_data_frame
        if int(index) > 0:
            dataframe.to_csv(csv_dir)
        return result
class TraderTrainer:
    def __init__(self, config, device="cpu"):
        """
        :param config: config dictionary
        :param device: the device used to train the network
        """
        self.config = config
        self.train_config = config["training"]
        self.input_config = config["input"]
        self.best_metric = 0
        # np.random.seed(config["random_seed"])

        self.__window_size = self.input_config["window_size"]
        self.__coin_number = self.input_config["coin_number"]
        self.__batch_size = self.train_config["batch_size"]

        self._matrix = DataMatrices.create_from_config(config)
        self.stock_code = self._matrix.stock_code

        self.test_set = self._matrix.get_test_set()
        # if not config["training"]["fast_train"]:
        self.training_set = self._matrix.get_training_set()
        self.upperbound_validation = 1
        self.upperbound_test = 1
        # tf.set_random_seed(self.config["random_seed"])
        self.device = device
        if device == "cpu":
            os.environ["CUDA_VISIBLE_DEVICES"] = ""
            with tf.device("/cpu:0"):
                self._agent = NNAgent(config, device)
        else:
            self._agent = NNAgent(config, device)

    def _evaluate(self, set_name, *tensors):
        if set_name == "test":
            feed = self.test_set
        elif set_name == "training":
            feed = self.training_set
        else:
            raise ValueError()
        result,output = self._agent.evaluate_tensors(feed["X"],feed["y"],last_w=feed["last_w"],
                                                     setw=feed["setw"], tensors=tensors, stock_index=feed["stock_index"],
                                                     # market_capticalization=feed["market_capticalization"],
                                                     # all_market_capticalization=feed["all_market_capticalization"]
                                                     )

        if set_name == "test":
            res = []
            for i in range(self.__coin_number):
                rowtemp = []
                rowtemp.append(self.stock_code[i])
                for j in range(60):
                    if j < self.__window_size - 1:
                        rowtemp.append(0.0)
                    elif j == self.__window_size - 1:
                        rowtemp.append(1.0/self.__coin_number)
                    else:
                        rowtemp.append(output[j - self.__window_size][i])
                res.append(rowtemp)
            print(res)
            outwb = Workbook()
            wo = outwb.active
            sheet = outwb.create_sheet('decision', 0)

            sheet.cell(1, 1).value = ''
            for col in range(60):
                sheet.cell(1, col + 2).value = col + 1
            for row in range(self.__coin_number):
                for col in range(61):
                    sheet.cell(row + 2, col + 1).value = res[row][col]
            outwb.save('F:\portfolio_rx\portfolio_rx\\N225\\vol_pg_result.xlsx')
        return result

    @staticmethod
    def calculate_upperbound(y):
        array = np.maximum.reduce(y[:, 0, :], 1)
        total = 1.0
        for i in array:
            total = total * i
        return total

    def log_between_steps(self, step):
        tflearn.is_training(False, self._agent.session)

        # v_pv, v_log_mean, v_loss, log_mean_free, weights, tracking_error, excess_return, sharpe_ratio, information_ratio, tracking_ratio= \
        v_pv, v_log_mean, v_loss, log_mean_free, weights, tracking_error, excess_return, sharpe_ratio, information_ratio =\
            self._evaluate("training",
                           self._agent.portfolio_value,
                           self._agent.log_mean,
                           self._agent.loss,
                           self._agent.log_mean_free,
                           self._agent.portfolio_weights,
                           self._agent.tracking_error,
                           self._agent.excess_return,
                           self._agent.sharp_ratio,
                           self._agent.information_ratio,
                           # self._agent.tracking_ratio
                           )

        loss_value = self._evaluate("training",self._agent.loss)

        print('='*30)
        print('step %d' % step)
        print('-'*30)
        print('the portfolio value on training set is %s\nlog_mean is %s\n'
                     'loss_value is %3f\nlog mean without commission fee is %3f\ntracking error is %3f\n'
                     'excess_return is %3f\nsharpe_ratio is %3f\ninformation_ratio is %3f\n'% \
                     (v_pv, v_log_mean, v_loss, log_mean_free, tracking_error, excess_return, sharpe_ratio, information_ratio))
        # print('tracking_ratio is '+str(tracking_ratio))
        print('='*30+"\n")


    def next_batch(self):
        batch = self._matrix.next_batch()
        batch_input = batch["X"]
        batch_y = batch["y"]
        batch_last_w = batch["last_w"]
        batch_w = batch["setw"]
        batch_stock_index = batch["stock_index"]
        # batch_market_capticalization = batch["market_capticalization"]
        # batch_all_market_capticalization = batch["all_market_capticalization"]
        # return batch_input, batch_y, batch_last_w, batch_w, batch_stock_index, batch_market_capticalization,batch_all_market_capticalization
        return batch_input, batch_y, batch_last_w, batch_w, batch_stock_index

    def __print_upperbound(self):
        upperbound_test = self.calculate_upperbound(self.test_set["y"])
        logging.info("upper bound in test is %s" % upperbound_test)

    def train_net(self):
        self.__print_upperbound()
        for i in range(self.train_config["steps"]):
            # x, y, last_w, setw, stock_index, market_capticalization, all_market_capticalization = self.next_batch()
            x, y, last_w, setw, stock_index = self.next_batch()
            # self._agent.train(x, y, last_w=last_w, setw=setw, stock_index=stock_index, market_capticalization=market_capticalization, all_market_capticalization=all_market_capticalization)
            self._agent.train(x, y, last_w=last_w, setw=setw, stock_index=stock_index)
            if i % 1000 == 0:
                self.log_between_steps(i)

        sr, te,er,ir = self._evaluate("test", self._agent.sharp_ratio, self._agent.tracking_error,self._agent.excess_return,self._agent.information_ratio)
        print('test set:sharp ratio is %lf, TE is %lf, ER is %lf, IR is %lf'% ( sr, te,er,ir))
Exemple #11
0
def predict_portfolio(algo, investment, chosen_coins, date, old_omega):

    # Set config
    if algo.isdigit():
        config = load_config(algo)
    else:
        base_dir = os.path.abspath(os.path.dirname(__file__))
        file_path = os.path.join(os.path.dirname(base_dir),
                                 'PGPortfolio/pgportfolio/net_config.json')
        with open(file_path) as file:
            config = json.load(file)

    input_config = config["input"]
    feature_number = input_config["feature_number"]
    period = input_config["global_period"]
    volume = input_config["volume_average_days"]
    features = get_type_list(feature_number)

    # Set start and end times for retrieving data
    date = date - 300 * (date % period < 300)
    end = int(
        date - (date % period)
    )  # converts into closest round time, minus 5 min if too close from it

    if algo.isdigit():
        # Use absolute path, to change to your configuration
        base_dir = os.path.abspath(os.path.dirname(__file__))
        net_dir = os.path.join(
            os.path.dirname(base_dir),
            'PGPortfolio/train_package/' + algo + '/netfile')
        #train_package_path = "/home/michael/cryptofolio/Django/projet/PGPortfolio/train_package/"
        #net_dir = train_package_path + algo + "/netfile"
        start = end - volume * period  # setting start to 30 periods before end
        start = int(start - (start % period))
    elif algo in ['bcrp', 'best']:
        start = end - 90 * volume * period  # setting start to 2700 periods before end (special algos)
        start = int(start - (start % period))
    else:
        start = end - volume * period  # setting start to 30 periods before end
        start = int(start - (start % period))

    # Create history matrix
    coin_list = create_coinlist(
    )  # a pandas dataframe with coins (index), pair, volume, price (in BTC)
    history = create_history(coin_list, chosen_coins, start, end, period,
                             features)  # history matrix

    # Generate new omega
    if algo.isdigit():
        os.environ["CUDA_VISIBLE_DEVICES"] = ""
        with tf.device("/cpu:0"):
            myAgent = NNAgent(config=config, restore_dir=net_dir, device="cpu")
        omega = myAgent.decide_by_history(history, old_omega)

    elif algo in valid_algorithms:
        package = importlib.import_module("pgportfolio.tdagent.algorithms." +
                                          algo)
        myAgent = getattr(package, algo.upper())()
        y = (history[0, :, 1:] / history[0, :, :-1])
        y = np.concatenate((np.ones((1, y.shape[1])), y), axis=0)
        omega = myAgent.decide_by_history(y.T, old_omega)
    else:
        print("Invalid algorithm")
        omega = None

    # Current BTC per Currency price (transformed into Currency per BTC)
    v = 1.0 / history[0, :, -1]
    v = np.concatenate((np.zeros(1), v), axis=0)
    # Round omega to percentage
    round_omega = np.around(omega, decimals=1)
    # Compute omega in term of currencies, not percentage
    portfolio = investment * round_omega * v
    return portfolio, round_omega
class TraderTrainer:
    def __init__(self,
                 config,
                 fake_data=False,
                 restore_dir=None,
                 save_path=None,
                 device="cpu",
                 agent=None):
        """
        :param config: config dictionary
        :param fake_data: if True will use data generated randomly
        :param restore_dir: path to the model trained before
        :param save_path: path to save the model
        :param device: the device used to train the network
        :param agent: the nnagent object. If this is provides, the trainer will not
        create a new agent by itself. Therefore the restore_dir will not affect anything.
        """
        self.config = config
        self.train_config = config["training"]
        self.input_config = config["input"]
        self.save_path = save_path
        self.best_metric = 0
        np.random.seed(config["random_seed"])

        self.__window_size = self.input_config["window_size"]
        self.__coin_number = self.input_config["coin_number"]
        self.__batch_size = self.train_config["batch_size"]
        self.__snap_shot = self.train_config["snap_shot"]
        config["input"]["fake_data"] = fake_data

        #creates Datamatrices from net_config.json
        self._matrix = DataMatrices.create_from_config(config)

        #:test set :-windowsize+1
        self.test_set = self._matrix.get_test_set()
        #fast train: true without pre-training
        if not config["training"]["fast_train"]:
            self.training_set = self._matrix.get_training_set()
        self.training_set = self._matrix.get_training_set()
        self.upperbound_validation = 1
        self.upperbound_test = 1
        tf.set_random_seed(self.config["random_seed"])
        self.device = device
        #needed for backtetst
        if agent:
            self._agent = agent
        else:
            #first run else is used to initialize NNAgent
            if device == "cpu":
                os.environ["CUDA_VISIBLE_DEVICES"] = ""
                with tf.device("/cpu:0"):
                    self._agent = NNAgent(config, restore_dir, device)
            else:
                self._agent = NNAgent(config, restore_dir, device)

    #returns results on the test or training set
    def _evaluate(self, set_name, *tensors):
        if set_name == "test":
            feed = self.test_set
        elif set_name == "training":
            feed = self.training_set
        else:
            raise ValueError()
        #evaluate Network on the whole set, where the whole last_w is feeded in one go
        result = self._agent.evaluate_tensors(feed["X"],
                                              feed["y"],
                                              last_w=feed["last_w"],
                                              setw=feed["setw"],
                                              tensors=tensors)
        return result

    @staticmethod
    def calculate_upperbound(y):
        array = np.maximum.reduce(y[:, 0, :], 1)
        total = 1.0
        for i in array:
            total = total * i
        return total

    #evaluates every 1000 steps on test set and on the training set if not fast train
    def log_between_steps(self, step):
        fast_train = self.train_config["fast_train"]
        tflearn.is_training(False, self._agent.session)

        summary, v_pv, v_log_mean, v_loss, log_mean_free, weights= \
            self._evaluate("test", self.summary,
                           self._agent.portfolio_value,
                           self._agent.log_mean,
                           self._agent.loss,
                           self._agent.log_mean_free,
                           self._agent.portfolio_weights)
        self.test_writer.add_summary(summary, step)

        #if not fast_train: evaluate on the training set as well
        if not fast_train:
            summary, loss_value = self._evaluate("training", self.summary,
                                                 self._agent.loss)
            self.train_writer.add_summary(summary, step)

        # print 'ouput is %s' % out
        logging.info('=' * 30)
        logging.info('step %d' % step)
        logging.info('-' * 30)
        if not fast_train:
            logging.info('training loss is %s\n' % loss_value)
        logging.info('the portfolio value on test set is %s\nlog_mean is %s\n'
                     'loss_value is %3f\nlog mean without commission fee is %3f\n' % \
                     (v_pv, v_log_mean, v_loss, log_mean_free))
        logging.info('=' * 30 + "\n")

        #snap_shot: fals: saves model
        if not self.__snap_shot:
            self._agent.save_model(self.save_path)
        #saves best portfolio return and saves model parameter if we have a new best portfolio return
        elif v_pv > self.best_metric:
            self.best_metric = v_pv
            logging.info("get better model at %s steps,"
                         " whose test portfolio value is %s" % (step, v_pv))
            if self.save_path:
                self._agent.save_model(self.save_path)
        self.check_abnormal(v_pv, weights)

    def check_abnormal(self, portfolio_value, weigths):
        if portfolio_value == 1.0:
            logging.info("average portfolio weights {}".format(
                weigths.mean(axis=0)))

    #returns next batch
    def next_batch(self):
        #opens DataMatrices for the next batch
        batch = self._matrix.next_batch()
        batch_input = batch["X"]
        batch_y = batch["y"]
        batch_last_w = batch["last_w"]
        batch_w = batch["setw"]
        return batch_input, batch_y, batch_last_w, batch_w

    def __init_tensor_board(self, log_file_dir):
        tf.summary.scalar('benefit', self._agent.portfolio_value)
        tf.summary.scalar('log_mean', self._agent.log_mean)
        tf.summary.scalar('loss', self._agent.loss)
        tf.summary.scalar("log_mean_free", self._agent.log_mean_free)
        self.summary = tf.summary.merge_all()
        location = log_file_dir
        self.network_writer = tf.summary.FileWriter(location + '/network',
                                                    self._agent.session.graph)
        self.test_writer = tf.summary.FileWriter(location + '/test')
        self.train_writer = tf.summary.FileWriter(location + '/train')

    def __print_upperbound(self):
        upperbound_test = self.calculate_upperbound(self.test_set["y"])
        logging.info("upper bound in test is %s" % upperbound_test)

    #method opened by training during training
    def train_net(self, log_file_dir="./tensorboard", index="0"):
        """
        :param log_file_dir: logging of the training process
        :param index: sub-folder name under train_package
        :return: the result named tuple
        """

        self.__print_upperbound()
        if log_file_dir:
            if self.device == "cpu":
                with tf.device("/cpu:0"):
                    self.__init_tensor_board(log_file_dir)
            else:
                self.__init_tensor_board(log_file_dir)

        #activate to use GARCH(1,1)

        garchmodel = Garch(self.config)
        print(self.config["input"]["global_period"])
        for i in range(0, 40000):
            batch = garchmodel.simulate()
            x = batch["X"]
            y = batch["y"]
            last_w = batch["last_w"]
            setw = batch["setw"]
            self._agent.train(x, y, last_w=last_w, setw=setw)
            if i % 1000 == 0:
                print(i)
        #tflearn.is_training(False, self._agent.session)
        result = self._evaluate("training")
        print(result)
        #tflearn.is_training(True, self.__net.session)

        starttime = time.time()
        """
        total_data_time = 0
        total_training_time = 0
        for i in range(self.train_config["steps"]):
            step_start = time.time()
            x, y, last_w, setw = self.next_batch()
            finish_data = time.time()
            total_data_time += (finish_data - step_start)
            #trains network for the batch and sets w
            self._agent.train(x, y, last_w=last_w, setw=setw)
            total_training_time += time.time() - finish_data
            if i % 1000 == 0 and log_file_dir:
                logging.info("average time for data accessing is %s"%(total_data_time/1000))
                logging.info("average time for training is %s"%(total_training_time/1000))
                total_training_time = 0
                total_data_time = 0
                self.log_between_steps(i)

        #after training, set agent
        if self.save_path:
            self._agent.recycle()
            best_agent = NNAgent(self.config, restore_dir=self.save_path)
            self._agent = best_agent

        #evaluate agent on the test set
        pv, log_mean = self._evaluate("test", self._agent.portfolio_value, self._agent.log_mean)
        logging.warning('the portfolio value train No.%s is %s log_mean is %s,'
                        ' the training time is %d seconds' % (index, pv, log_mean, time.time() - starttime))
        """
        #start backtesting during training on the test set
        return self.__log_result_csv(index, time.time() - starttime)

    def __log_result_csv(self, index, time):
        from pgportfolio.trade import backtest
        dataframe = None
        csv_dir = './train_package/train_summary.csv'
        json_dir = "./train_package/" + str(
            int(index)) + "/weight_history" + str(int(index)) + ".json"
        tflearn.is_training(False, self._agent.session)
        #evaluate on the test set
        v_pv, v_log_mean, benefit_array, v_log_mean_free =\
            self._evaluate("test",
                           self._agent.portfolio_value,
                           self._agent.log_mean,
                           self._agent.pv_vector,
                           self._agent.log_mean_free)

        #initialize backtest
        backtest = backtest.BackTest(self.config.copy(),
                                     net_dir=None,
                                     agent=self._agent)

        #method of trader, initialized by BackTest
        backtest.start_trading()
        #collects the result in a dic
        result = Result(
            test_pv=[v_pv],
            test_log_mean=[v_log_mean],
            test_log_mean_free=[v_log_mean_free],
            test_history=[''.join(str(e) + ', ' for e in benefit_array)],
            config=[json.dumps(self.config)],
            net_dir=[index],
            backtest_test_pv=[backtest.test_pv],
            backtest_test_history=[
                ''.join(str(e) + ', ' for e in backtest.test_pc_vector)
            ],
            backtest_test_log_mean=[np.mean(np.log(backtest.test_pc_vector))],
            training_time=int(time))
        new_data_frame = pd.DataFrame(result._asdict()).set_index("net_dir")
        historyweights = []
        for weight in backtest.test_updated_omega:
            historyweights.append(weight.tolist())
        backtesthistory = {"portfolioweights": historyweights}
        if os.path.isfile(csv_dir):
            dataframe = pd.read_csv(csv_dir).set_index("net_dir")
            dataframe = dataframe.append(new_data_frame)
        else:
            dataframe = new_data_frame
        if int(index) > 0:
            #writes everything in train_package/train_summary.csv and creates it
            dataframe.to_csv(csv_dir)

            #writes everything in train_package/int(index)/weight_history int(index).json
            with open(json_dir, 'w') as outfile:
                json.dump(backtesthistory, outfile)
        return result
class TraderTrainer:
    def __init__(self, config, fake_data=False, restore_dir=None, save_path=None, device="cpu",
                 agent=None):
        """
        :param config: config dictionary
        :param fake_data: if True will use data generated randomly
        :param restore_dir: path to the model trained before
        :param save_path: path to save the model
        :param device: the device used to train the network
        :param agent: the nnagent object. If this is provides, the trainer will not
        create a new agent by itself. Therefore the restore_dir will not affect anything.
        """
        self.config = config
        self.train_config = config["training"]
        self.input_config = config["input"]
        self.save_path = save_path
        self.best_metric = 0
        np.random.seed(config["random_seed"])

        self.__window_size = self.input_config["window_size"]
        self.__coin_number = self.input_config["coin_number"]
        self.__batch_size = self.train_config["batch_size"]
        self.__snap_shot = self.train_config["snap_shot"]
        config["input"]["fake_data"] = fake_data

        self._matrix = DataMatrices.create_from_config(config)

        self.test_set = self._matrix.get_test_set()
        if not config["training"]["fast_train"]:
            self.training_set = self._matrix.get_training_set()
        self.upperbound_validation = 1
        self.upperbound_test = 1
        tf.set_random_seed(self.config["random_seed"])
        self.device = device
        if agent:
            self._agent = agent
        else:
            if device == "cpu":
                os.environ["CUDA_VISIBLE_DEVICES"] = ""
                with tf.device("/cpu:0"):
                    self._agent = NNAgent(config, restore_dir, device)
            else:
                self._agent = NNAgent(config, restore_dir, device)

    def _evaluate(self, set_name, *tensors):
        if set_name == "test":
            feed = self.test_set
        elif set_name == "training":
            feed = self.training_set
        else:
            raise ValueError()
        result = self._agent.evaluate_tensors(feed["X"],feed["y"],last_w=feed["last_w"],
                                              setw=feed["setw"], tensors=tensors)
        return result

    @staticmethod
    def calculate_upperbound(y):
        array = np.maximum.reduce(y[:, 0, :], 1)
        total = 1.0
        for i in array:
            total = total * i
        return total

    def log_between_steps(self, step):
        fast_train = self.train_config["fast_train"]
        tflearn.is_training(False, self._agent.session)

        summary, v_pv, v_log_mean, v_loss, log_mean_free, weights= \
            self._evaluate("test", self.summary,
                           self._agent.portfolio_value,
                           self._agent.log_mean,
                           self._agent.loss,
                           self._agent.log_mean_free,
                           self._agent.portfolio_weights)
        self.test_writer.add_summary(summary, step)

        if not fast_train:
            summary, loss_value = self._evaluate("training", self.summary, self._agent.loss)
            self.train_writer.add_summary(summary, step)

        # print 'ouput is %s' % out
        logging.info('='*30)
        logging.info('step %d' % step)
        logging.info('-'*30)
        if not fast_train:
            logging.info('training loss is %s\n' % loss_value)
        logging.info('the portfolio value on test set is %s\nlog_mean is %s\n'
                     'loss_value is %3f\nlog mean without commission fee is %3f\n' % \
                     (v_pv, v_log_mean, v_loss, log_mean_free))
        logging.info('='*30+"\n")

        if not self.__snap_shot:
            self._agent.save_model(self.save_path)
        elif v_pv > self.best_metric:
            self.best_metric = v_pv
            logging.info("get better model at %s steps,"
                         " whose test portfolio value is %s" % (step, v_pv))
            if self.save_path:
                self._agent.save_model(self.save_path)
        self.check_abnormal(v_pv, weights)

    def check_abnormal(self, portfolio_value, weigths):
        if portfolio_value == 1.0:
            logging.info("average portfolio weights {}".format(weigths.mean(axis=0)))


    def next_batch(self):
        batch = self._matrix.next_batch()
        batch_input = batch["X"]
        batch_y = batch["y"]
        batch_last_w = batch["last_w"]
        batch_w = batch["setw"]
        return batch_input, batch_y, batch_last_w, batch_w

    def __init_tensor_board(self, log_file_dir):
        tf.summary.scalar('benefit', self._agent.portfolio_value)
        tf.summary.scalar('log_mean', self._agent.log_mean)
        tf.summary.scalar('loss', self._agent.loss)
        tf.summary.scalar("log_mean_free", self._agent.log_mean_free)
        self.summary = tf.summary.merge_all()
        location = log_file_dir
        self.network_writer = tf.summary.FileWriter(location + '/network',
                                                    self._agent.session.graph)
        self.test_writer = tf.summary.FileWriter(location + '/test')
        self.train_writer = tf.summary.FileWriter(location + '/train')

    def __print_upperbound(self):
        upperbound_test = self.calculate_upperbound(self.test_set["y"])
        logging.info("upper bound in test is %s" % upperbound_test)

    def train_net(self, log_file_dir="./tensorboard", index="0"):
        """
        :param log_file_dir: logging of the training process
        :param index: sub-folder name under train_package
        :return: the result named tuple
        """
        self.__print_upperbound()
        if log_file_dir:
            if self.device == "cpu":
                with tf.device("/cpu:0"):
                    self.__init_tensor_board(log_file_dir)
            else:
                self.__init_tensor_board(log_file_dir)
        starttime = time.time()

        total_data_time = 0
        total_training_time = 0
        for i in range(self.train_config["steps"]):
            step_start = time.time()
            x, y, last_w, setw = self.next_batch()
            finish_data = time.time()
            total_data_time += (finish_data - step_start)
            self._agent.train(x, y, last_w=last_w, setw=setw)
            total_training_time += time.time() - finish_data
            if i % 1000 == 0 and log_file_dir:
                logging.info("average time for data accessing is %s"%(total_data_time/1000))
                logging.info("average time for training is %s"%(total_training_time/1000))
                total_training_time = 0
                total_data_time = 0
                self.log_between_steps(i)

        if self.save_path:
            self._agent.recycle()
            best_agent = NNAgent(self.config, restore_dir=self.save_path)
            self._agent = best_agent

        pv, log_mean = self._evaluate("test", self._agent.portfolio_value, self._agent.log_mean)
        logging.warning('the portfolio value train No.%s is %s log_mean is %s,'
                        ' the training time is %d seconds' % (index, pv, log_mean, time.time() - starttime))

        return self.__log_result_csv(index, time.time() - starttime)

    def __log_result_csv(self, index, time):
        from pgportfolio.trade import backtest
        dataframe = None
        csv_dir = './train_package/train_summary.csv'
        tflearn.is_training(False, self._agent.session)
        v_pv, v_log_mean, benefit_array, v_log_mean_free =\
            self._evaluate("test",
                           self._agent.portfolio_value,
                           self._agent.log_mean,
                           self._agent.pv_vector,
                           self._agent.log_mean_free)

        backtest = backtest.BackTest(self.config.copy(),
                                     net_dir=None,
                                     agent=self._agent)

        backtest.start_trading()
        result = Result(test_pv=[v_pv],
                        test_log_mean=[v_log_mean],
                        test_log_mean_free=[v_log_mean_free],
                        test_history=[''.join(str(e)+', ' for e in benefit_array)],
                        config=[json.dumps(self.config)],
                        net_dir=[index],
                        backtest_test_pv=[backtest.test_pv],
                        backtest_test_history=[''.join(str(e)+', ' for e in backtest.test_pc_vector)],
                        backtest_test_log_mean=[np.mean(np.log(backtest.test_pc_vector))],
                        training_time=int(time))
        new_data_frame = pd.DataFrame(result._asdict()).set_index("net_dir")
        if os.path.isfile(csv_dir):
            dataframe = pd.read_csv(csv_dir).set_index("net_dir")
            dataframe = dataframe.append(new_data_frame)
        else:
            dataframe = new_data_frame
        if int(index) > 0:
            dataframe.to_csv(csv_dir)
        return result