def test_track(silent=True, precision="d", decimals=80): """ Tests the path tracking on a small random system. Two random trinomials are generated and random constants are added to ensure there are no singular solutions so we can use this generated system as a start system. The target system has the same monomial structure as the start system, but with random real coefficients. Because all coefficients are random, the number of paths tracked equals the mixed volume of the system. """ from phcpy.solver import random_trinomials, real_random_trinomials from phcpy.solver import solve, mixed_volume, newton_step pols = random_trinomials() real_pols = real_random_trinomials(pols) from random import uniform as u qone = pols[0][:-1] + ("%+.17f" % u(-1, +1)) + ";" qtwo = pols[1][:-1] + ("%+.17f" % u(-1, +1)) + ";" rone = real_pols[0][:-1] + ("%+.17f" % u(-1, +1)) + ";" rtwo = real_pols[1][:-1] + ("%+.17f" % u(-1, +1)) + ";" start = [qone, qtwo] target = [rone, rtwo] start_sols = solve(start, silent) sols = track(target, start, start_sols, precision, decimals) mixvol = mixed_volume(target) print "mixed volume of the target is", mixvol print "number of solutions found :", len(sols) newton_step(target, sols, precision, decimals)
def compute_degree(): """ Prompts the user for the parameters m and L. Computes the degree of the cyclic n-roots set, for n = m**2*L. """ (m, L, n) = ask_inputs() print 'The dimension n = %d**2*%d = %d.' % (m, L, n) coords = component_monomials(m, L) print 'monomial coordinates of a cyclic %d-roots component :' % n for c in coords: print c dim = m-1 print 'dimension =', dim pol = '' for c in coords: pol = pol + c print pol sys = [] for k in range(dim): sys.append(pol + ';') print sys from phcpy.solver import mixed_volume deg = mixed_volume(sys) print 'the degree of cyclic %d-roots set : %d' % (n, deg)
def degree(m, L): """ Returns the degree of the cyclic n-roots solution set, for n = m**2*L. """ coords = component_monomials(m, L) dim = m - 1 pol = '' for c in coords: pol = pol + c sys = [] for k in range(m - 1): sys.append(pol + ';') from phcpy.solver import mixed_volume deg = mixed_volume(sys) return deg
def degree(m, L): """ Returns the degree of the cyclic n-roots solution set, for n = m**2*L. """ coords = component_monomials(m, L) dim = m-1 pol = '' for c in coords: pol = pol + c sys = [] for k in range(m-1): sys.append(pol + ';') from phcpy.solver import mixed_volume deg = mixed_volume(sys) return deg