Exemple #1
0
def staggered_component_box(resolution, axis, box_like=None):
    staggered_box = AABox(0, resolution) if box_like is None else AABox.to_box(
        box_like, resolution_hint=resolution)
    unit = np.array([
        (staggered_box.size[axis] / resolution[axis]) if d == axis else 0
        for d in range(len(resolution))
    ])
    box = AABox(staggered_box.lower - unit / 2, staggered_box.upper + unit / 2)
    return box
Exemple #2
0
 def test_batched_box(self):
     mybox = AABox(0,
                   np.stack(
                       [np.ones(10), np.linspace(0, 10, 10)], axis=-1))
     # 0D indexing
     values = mybox.value_at(np.zeros([10, 2]) + [0, 4])
     np.testing.assert_equal(values.shape, [10, 1])
     np.testing.assert_equal(values[:, 0], [0, 0, 0, 0, 1, 1, 1, 1, 1, 1])
     # 1D indexing
     values = mybox.value_at(np.zeros([10, 3, 2]) + [0, 4])
     np.testing.assert_equal(values.shape, [10, 3, 1])
     np.testing.assert_equal(values[:, 0, 0],
                             [0, 0, 0, 0, 1, 1, 1, 1, 1, 1])
Exemple #3
0
 def padded(self, widths):
     data = math.pad(self.data, [[0, 0]] + widths + [[0, 0]],
                     _pad_mode(self.extrapolation))
     w_lower, w_upper = np.transpose(widths)
     box = AABox(self.box.lower - w_lower * self.dx,
                 self.box.upper + w_upper * self.dx)
     return self.copied_with(data=data, box=box)
Exemple #4
0
def conv_layer(grid,
               filters,
               kernel_size,
               strides=1,
               padding='valid',
               activation=None,
               use_bias=True,
               name=None,
               trainable=True,
               reuse=None):
    assert isinstance(grid, CenteredGrid)
    if grid.rank == 2:
        result = tf.layers.conv2d(grid.data,
                                  filters,
                                  kernel_size,
                                  strides=strides,
                                  activation=activation,
                                  padding=padding,
                                  name=name,
                                  use_bias=use_bias,
                                  trainable=trainable,
                                  reuse=reuse)
        if padding != 'valid':
            box = grid.box
        else:
            w_upper = kernel_size // 2
            w_lower = (kernel_size - 1) // 2
            box = AABox(grid.box.lower + w_lower * grid.dx,
                        grid.box.upper - w_upper * grid.dx)
        return CenteredGrid(result, box=box, extrapolation=grid.extrapolation)
    else:
        raise NotImplementedError()
Exemple #5
0
 def padded(self, widths):
     new_grids = [grid.padded(widths) for grid in self.unstack()]
     if isinstance(widths, int):
         widths = [[widths, widths]] * self.rank
     w_lower, w_upper = np.transpose(widths)
     box = AABox(self.box.lower - w_lower * self.dx, self.box.upper + w_upper * self.dx)
     return self.copied_with(data=new_grids, box=box)
Exemple #6
0
 def padded(self, widths):
     extrapolation = self.extrapolation if isinstance(
         self.extrapolation, six.string_types) else ['constant'] + list(
             self.extrapolation) + ['constant']
     data = math.pad(self.data, [[0, 0]] + widths + [[0, 0]],
                     _pad_mode(extrapolation))
     w_lower, w_upper = np.transpose(widths)
     box = AABox(self.box.lower - w_lower * self.dx,
                 self.box.upper + w_upper * self.dx)
     return self.copied_with(data=data, box=box)
Exemple #7
0
 def padded(self, widths):
     if isinstance(widths, int):
         widths = [[widths, widths]] * self.rank
     data = math.pad(self.data, [[0, 0]] + widths + [[0, 0]],
                     _pad_mode(self.extrapolation),
                     constant_values=_pad_value(self.extrapolation_value))
     w_lower, w_upper = np.transpose(widths)
     box = AABox(self.box.lower - w_lower * self.dx,
                 self.box.upper + w_upper * self.dx)
     return self.copied_with(data=data, box=box)
Exemple #8
0
def data_bounds(field):
    assert field.has_points
    try:
        data = field.points.data
        min_vec = math.min(data, axis=tuple(range(len(data.shape) - 1)))
        max_vec = math.max(data, axis=tuple(range(len(data.shape) - 1)))
    except StaggeredSamplePoints:
        boxes = [data_bounds(c) for c in field.unstack()]
        min_vec = math.min([b.lower for b in boxes], axis=0)
        max_vec = math.max([b.upper for b in boxes], axis=0)
    return AABox(min_vec, max_vec)
Exemple #9
0
 def simulate(centers):
     world = World()
     fluid = world.add(Fluid(Domain([5, 4], boundaries=CLOSED, box=AABox(0, [40, 32])),
                             buoyancy_factor=0.1,
                             batch_size=centers.shape[0]),
                       physics=IncompressibleFlow(pressure_solver=SparseCG(max_iterations=3)))
     world.add(Inflow(Sphere(center=centers, radius=3), rate=0.2))
     world.add(Fan(Sphere(center=centers, radius=5), acceleration=[1.0, 0]))
     world.step(dt=1.5)
     world.step(dt=1.5)
     world.step(dt=1.5)
     print()
     return fluid.density.data[0, ...], fluid.velocity.unstack()[0].data[0, ...], fluid.velocity.unstack()[1].data[0, ...]
Exemple #10
0
 def padded(self, widths):
     extrapolation = self.extrapolation if isinstance(
         self.extrapolation, six.string_types) else ['constant'] + list(
             self.extrapolation) + ['constant']
     data = math.pad(self.data, [[0, 0]] + widths + [[0, 0]],
                     _pad_mode(extrapolation))
     w_lower, w_upper = np.transpose(widths)
     box = AABox(self.box.lower - w_lower * self.dx,
                 self.box.upper + w_upper * self.dx)
     return CenteredGrid(data,
                         box,
                         extrapolation=self.extrapolation,
                         name=self.name,
                         batch_size=self._batch_size)
Exemple #11
0
 def box(self, box):
     return AABox.to_box(box, resolution_hint=self.resolution)
Exemple #12
0
 def box(self, box):
     box = AABox.to_box(box, resolution_hint=self.resolution)
     assert_same_rank(len(self.data), self.box,
                      'StaggeredGrid.data does not match box.')
     return box