Exemple #1
0
    def test_linear_operator(self):
        GLOBAL_AXIS_ORDER.x_last()
        direct = math.random_normal(batch=3, x=4, y=3)  # , vector=2
        op = lin_placeholder(direct)

        def linear_function(val):
            val = -val
            val *= 2
            val = math.pad(val, {'x': (2, 0), 'y': (0, 1)}, extrapolation.PERIODIC)
            val = val.x[:-2].y[1:] + val.x[2:].y[:-1]
            val = math.pad(val, {'x': (0, 0), 'y': (0, 1)}, extrapolation.ZERO)
            val = math.pad(val, {'x': (2, 2), 'y': (0, 1)}, extrapolation.BOUNDARY)
            # sl = sl.vector[0]
            return val
            val = val.x[1:4].y[:2]
            return math.sum([val, sl], axis=0) - sl

        functions = [
            linear_function,
            lambda val: math.gradient(val, difference='forward', padding=extrapolation.ZERO, dims='x').gradient[0],
            lambda val: math.gradient(val, difference='backward', padding=extrapolation.PERIODIC, dims='x').gradient[0],
            lambda val: math.gradient(val, difference='central', padding=extrapolation.BOUNDARY, dims='x').gradient[0],
        ]

        for f in functions:
            direct_result = f(direct)
            # print(direct_result.batch[0], 'Direct result')
            op_result = f(op)
            # print(op_result.build_sparse_coordinate_matrix().todense())
            self.assertIsInstance(op_result, ShiftLinOp)
            op_result = NativeTensor(op_result.native(), op_result.shape)
            # print(op_result.batch[0], 'Placeholder result')
            math.assert_close(direct_result, op_result)
Exemple #2
0
 def test_gradient_vector(self):
     meshgrid = math.meshgrid(x=4, y=3)
     cases = dict(difference=('central', 'forward', 'backward'),
                  padding=(None, extrapolation.ONE, extrapolation.BOUNDARY,
                           extrapolation.PERIODIC, extrapolation.SYMMETRIC),
                  dx=(0.1, 1),
                  dims=(
                      None,
                      ('x', 'y'),
                  ))
     for case_dict in [
             dict(zip(cases, v)) for v in product(*cases.values())
     ]:
         grad = math.gradient(meshgrid, **case_dict)
         inner = grad.x[1:-1].y[1:-1]
         math.assert_close(inner.spatial_gradient[0].vector[1], 0)
         math.assert_close(inner.spatial_gradient[1].vector[0], 0)
         math.assert_close(inner.spatial_gradient[0].vector[0],
                           1 / case_dict['dx'])
         math.assert_close(inner.spatial_gradient[1].vector[1],
                           1 / case_dict['dx'])
         self.assertEqual(grad.shape.vector, 2)
         self.assertEqual(grad.shape.spatial_gradient, 2)
         ref_shape = (4, 3) if case_dict['padding'] is not None else ((
             2, 1) if case_dict['difference'] == 'central' else (3, 2))
         self.assertEqual((grad.shape.x, grad.shape.y), ref_shape)
Exemple #3
0
def divergence(field: Grid) -> CenteredGrid:
    """
    Computes the divergence of a grid using finite differences.

    This function can operate in two modes depending on the type of `field`:

    * `CenteredGrid` approximates the divergence at cell centers using central differences
    * `StaggeredGrid` exactly computes the divergence at cell centers

    Args:
        field: vector field as `CenteredGrid` or `StaggeredGrid`

    Returns:
        Divergence field as `CenteredGrid`
    """
    if isinstance(field, StaggeredGrid):
        components = []
        for i, dim in enumerate(field.shape.spatial.names):
            div_dim = math.gradient(field.values.vector[i],
                                    dx=field.dx[i],
                                    difference='forward',
                                    padding=None,
                                    dims=[dim]).gradient[0]
            components.append(div_dim)
        data = math.sum(components, 0)
        return CenteredGrid(data, field.box, field.extrapolation.gradient())
    elif isinstance(field, CenteredGrid):
        left, right = shift(field, (-1, 1), stack_dim='div_')
        grad = (right - left) / (field.dx * 2)
        components = [grad.vector[i].div_[i] for i in range(grad.div_.size)]
        result = sum(components)
        return result
    else:
        raise NotImplementedError(
            f"{type(field)} not supported. Only StaggeredGrid allowed.")
Exemple #4
0
 def gradient(self, physical_units=True):
     if not physical_units or self.has_cubic_cells:
         data = math.gradient(self.data,
                              dx=np.mean(self.dx),
                              padding=_pad_mode(self.extrapolation))
         return self.copied_with(data=data,
                                 extrapolation=_gradient_extrapolation(
                                     self.extrapolation),
                                 flags=())
     else:
         raise NotImplementedError('Only cubic cells supported.')
Exemple #5
0
 def test_gradient_scalar(self):
     ones = tensor(np.ones([2, 4, 3]), 'batch,x,y')
     cases = dict(difference=('central', 'forward', 'backward'),
                  padding=(None, extrapolation.ONE, extrapolation.BOUNDARY,
                           extrapolation.PERIODIC, extrapolation.SYMMETRIC))
     for case_dict in [
             dict(zip(cases, v)) for v in product(*cases.values())
     ]:
         scalar_grad = math.gradient(ones, dx=0.1, **case_dict)
         math.assert_close(scalar_grad, 0)
         self.assertEqual(scalar_grad.shape.names,
                          ('batch', 'x', 'y', 'gradient'))
         ref_shape = (2, 4, 3, 2) if case_dict['padding'] is not None else (
             (2, 2, 1, 2) if case_dict['difference'] == 'central' else
             (2, 3, 2, 2))
         self.assertEqual(scalar_grad.shape.sizes, ref_shape)
Exemple #6
0
def spatial_gradient(field: CenteredGrid,
                     type: type = CenteredGrid,
                     stack_dim='vector'):
    """
    Finite difference spatial_gradient.

    This function can operate in two modes:

    * `type=CenteredGrid` approximates the spatial_gradient at cell centers using central differences
    * `type=StaggeredGrid` computes the spatial_gradient at face centers of neighbouring cells

    Args:
        field: centered grid of any number of dimensions (scalar field, vector field, tensor field)
        type: either `CenteredGrid` or `StaggeredGrid`
        stack_dim: name of dimension to be added. This dimension lists the spatial_gradient w.r.t. the spatial dimensions.
            The `field` must not have a dimension of the same name.

    Returns:
        spatial_gradient field of type `type`.

    """
    if type == CenteredGrid:
        values = math.gradient(field.values,
                               field.dx.vector.as_channel(name=stack_dim),
                               difference='central',
                               padding=field.extrapolation,
                               stack_dim=stack_dim)
        return CenteredGrid(values, field.bounds,
                            field.extrapolation.spatial_gradient())
    elif type == StaggeredGrid:
        assert stack_dim == 'vector'
        return stagger(field, lambda lower, upper: (upper - lower) / field.dx,
                       field.extrapolation.spatial_gradient())
    raise NotImplementedError(
        f"{type(field)} not supported. Only CenteredGrid and StaggeredGrid allowed."
    )