def arc(radius=10, angle=90, num_pts=720): """ Create a circular arc Path Parameters ---------- radius : int or float Radius of arc angle : int or float Total angle of arc num_pts : int Number of points used per 360 degrees Returns ------- Path A Path object with the specified arc """ num_pts = abs(int(num_pts * angle / 360)) t = np.linspace(-90 * np.pi / 180, (angle - 90) * np.pi / 180, num_pts) x = radius * np.cos(t) y = radius * (np.sin(t) + 1) points = np.array((x, y)).T * np.sign(angle) P = Path() # Manually add points & adjust start and end angles P.points = points P.start_angle = 0 P.end_angle = angle return P
def euler(radius=3, angle=90, p=1.0, use_eff=False, num_pts=720): """ Create an Euler bend (also known as "racetrack" or "clothoid" curves) that adiabatically transitions from straight to curved. By default, `radius` corresponds to the minimum radius of curvature of the bend. However, if `use_eff` is set to True, `radius` corresponds to the effective radius of curvature (making the curve a drop-in replacement for an arc). If p < 1.0, will create a "partial euler" curve as described in Vogelbacher et. al. https://dx.doi.org/10.1364/oe.27.031394 Parameters ---------- radius : int or float Minimum radius of curvature angle : int or float Total angle of curve p : float Proportion of curve that is an Euler curve use_eff : bool If False: `radius` corresponds to minimum radius of curvature of the bend If True: The curve will be scaled such that the endpoints match an arc with parameters `radius` and `angle` num_pts : int Number of points used per 360 degrees Returns ------- Path A Path object with the specified Euler curve """ if (p < 0) or (p > 1): raise ValueError( '[PHIDL] euler() requires argument `p` be between 0 and 1') if p == 0: P = arc(radius=radius, angle=angle, num_pts=num_pts) P.info['Reff'] = radius P.info['Rmin'] = radius return P if angle < 0: mirror = True angle = np.abs(angle) else: mirror = False R0 = 1 alpha = np.radians(angle) Rp = R0 / (np.sqrt(p * alpha)) sp = R0 * np.sqrt(p * alpha) s0 = 2 * sp + Rp * alpha * (1 - p) num_pts = abs(int(num_pts * angle / 360)) num_pts_euler = int(np.round(sp / (s0 / 2) * num_pts)) num_pts_arc = num_pts - num_pts_euler xbend1, ybend1 = _fresnel(R0, sp, num_pts_euler) xp, yp = xbend1[-1], ybend1[-1] dx = xp - Rp * np.sin(p * alpha / 2) dy = yp - Rp * (1 - np.cos(p * alpha / 2)) s = np.linspace(sp, s0 / 2, num_pts_arc) xbend2 = Rp * np.sin((s - sp) / Rp + p * alpha / 2) + dx ybend2 = Rp * (1 - np.cos((s - sp) / Rp + p * alpha / 2)) + dy x = np.concatenate([xbend1, xbend2[1:]]) y = np.concatenate([ybend1, ybend2[1:]]) points1 = np.array([x, y]).T points2 = np.flipud(np.array([x, -y]).T) points2 = _rotate_points(points2, angle - 180) points2 += -points2[0, :] + points1[-1, :] points = np.concatenate([points1[:-1], points2]) # Find y-axis intersection point to compute Reff start_angle = 180 * (angle < 0) end_angle = start_angle + angle dy = np.tan(np.radians(end_angle - 90)) * points[-1][0] Reff = points[-1][1] - dy Rmin = Rp # Fix degenerate condition at angle == 180 if np.abs(180 - angle) < 1e-3: Reff = points[-1][1] / 2 # Scale curve to either match Reff or Rmin if use_eff == True: scale = radius / Reff else: scale = radius / Rmin points *= scale P = Path() # Manually add points & adjust start and end angles P.points = points P.start_angle = start_angle P.end_angle = end_angle P.info['Reff'] = Reff * scale P.info['Rmin'] = Rmin * scale if mirror == True: P.mirror((1, 0)) return P
def spiral(num_turns=5, gap=1, inner_gap=2, num_pts=10000): """ Creates a spiral geometry consisting of two oddly-symmetric semi-circular arcs in the centre and two Archimedean (involute) spiral arms extending outward from the ends of both arcs. Parameters ---------- num_turns : int or float The number of turns in the spiral. Must be greater than 1. A full spiral rotation counts as 1 turn, and the center arcs will together always be 0.5 turn. gap : int or float The distance between any point on one arm of the spiral and a point with the same angular coordinate on an adjacent arm. inner_gap : int or float The inner size of the spiral, equal to twice the chord length of the centre arcs. num_pts: int The number of points in the entire spiral. The actual number of points will be slightly different than the specified value, as they are dynamically allocated using the path lengths of the spiral. Returns ------- Path A Path object forming a spiral Notes ----- ``num_turns`` usage (x is any whole number): - ``num_turns = x.0``: Output arm will be extended 0.5 turn to be on the same side as the input. - ``num_turns < x.5``: Input arm will be extended by the fractional amount. - ``num_turns = x.5``: Both arms will be the same length and the input and output will be on opposite sides. - ``num_turns > x.5``: Output arm will be extended by the fractional amount. """ # Establishing number of turns in each arm if num_turns <= 1: raise ValueError('num_turns must be greater than 1') diff = num_turns - np.floor(num_turns) if diff < 0.5: num_turns1 = np.floor(num_turns) - 1 + 2 * diff else: num_turns1 = np.floor(num_turns) if diff > 0.5: num_turns2 = np.floor(num_turns) - 1 + 2 * diff else: num_turns2 = np.floor(num_turns) # Establishing relevant angles and spiral/centre arc parameters a1 = np.pi / 2 a2 = np.array([np.pi * num_turns1 + a1, np.pi * num_turns2 + a1]) a = inner_gap / 2 - gap / 2 b = gap / np.pi Rc = inner_gap * np.sqrt(1 + (b / (a + b * a1))**2) / 4 theta = np.degrees(2 * np.arcsin(inner_gap / 4 / Rc)) # Establishing number of points in each arm s_centre = Rc * np.radians(theta) s_spiral = ((a + a2 * b)**2 + b**2)**(3 / 2) / (3 * (a * b + (a2 * b**2))) z = num_pts / (s_spiral[0] + s_spiral[1] + 2 * s_centre) num_pts0 = int(z * s_centre) num_pts1 = int(z * s_spiral[0]) num_pts2 = int(z * s_spiral[1]) - num_pts1 # Forming both spiral arms arm1 = np.linspace(a1, a2[0], num_pts1) arm2 = np.linspace(a2[0], a2[1], num_pts2)[1:] a_spiral = np.array([arm1, np.concatenate([arm1, arm2])]) r_spiral = a + b * a_spiral x_spiral = np.array([np.zeros(num_pts1), np.zeros(len(a_spiral[1]))]) y_spiral = np.array([np.zeros(num_pts1), np.zeros(len(a_spiral[1]))]) for i in range(2): x_spiral[i] = r_spiral[i] * np.cos(a_spiral[i]) y_spiral[i] = r_spiral[i] * np.sin(a_spiral[i]) # Forming centre arcs pts = _rotate_points( arc(Rc, theta, 360 * num_pts0 / theta).points, -theta / 2 + 90) x_centre = pts[:, 0] + x_spiral[0][0] - pts[:, 0][-1] y_centre = pts[:, 1] + y_spiral[0][0] - pts[:, 1][-1] x_centre = np.concatenate([-np.flip(x_centre), x_centre]) y_centre = np.concatenate([-np.flip(y_centre), y_centre]) # Combining into final spiral x = np.concatenate([-np.flip(x_spiral[1]), x_centre, x_spiral[0]]) y = np.concatenate([-np.flip(y_spiral[1]), y_centre, y_spiral[0]]) points = np.array((x, y)).T P = Path() # Manually add points & adjust start and end angles P.points = points nx1, ny1 = points[1] - points[0] P.start_angle = np.arctan2(ny1, nx1) / np.pi * 180 nx2, ny2 = points[-1] - points[-2] P.end_angle = np.arctan2(ny2, nx2) / np.pi * 180 # print(P.start_angle) # print(P.end_angle) return P