config = { 'n_in': 2, 'hidden_dims': [30, 30, 30, 30, 30], 'n_out': 1, 'library_function': library_1D_in, 'library_args': { 'poly_order': 2, 'diff_order': 3 } } n_runs = 5 for run_idx in np.arange(n_runs): X_train, y_train, rand_idx = dataset.create_dataset(x_grid.reshape(-1, 1), t_grid.reshape(-1, 1), n_samples=1000, noise=0.1, random=True, return_idx=True) theta = dataset.library(x_grid.reshape(-1, 1), t_grid.reshape(-1, 1), poly_order=2, deriv_order=3)[rand_idx, :] dt = dataset.time_deriv(x_grid.reshape(-1, 1), t_grid.reshape(-1, 1))[rand_idx, :] model = DeepMod(**config) optimizer = torch.optim.Adam(model.parameters(), betas=(0.99, 0.999), amsgrad=True) train(model,
# Settings for reproducibility np.random.seed(42) torch.manual_seed(0) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False # Making data v = 0.2 A = 1.0 x = np.linspace(-3, 4, 100) t = np.linspace(0.5, 5.0, 50) x_grid, t_grid = np.meshgrid(x, t, indexing='ij') dataset = Dataset(BurgersDelta, v=v, A=A) X_train, y_train = dataset.create_dataset(x_grid.reshape(-1, 1), t_grid.reshape(-1, 1), n_samples=1000, noise=0.2) # Configuring model network = NN(2, [30, 30, 30, 30, 30], 1) # Function approximator library = Library1D(poly_order=2, diff_order=2) # Library function estimator = PINN([2, 4]) # active terms are 2 and 5 constraint = LeastSquares() # How to constrain model = DeepMoD(network, library, estimator, constraint) # Putting it all in the model # Running model sparsity_scheduler = Periodic(initial_epoch=0, periodicity=1) # Defining when to apply sparsity optimizer = torch.optim.Adam(model.parameters(), betas=(0.99, 0.999),
from sklearn.linear_model import LassoLarsIC if torch.cuda.is_available(): torch.set_default_tensor_type('torch.cuda.FloatTensor') np.random.seed(42) torch.manual_seed(42) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False v = 0.1 A = 1.0 # Making grid x = np.linspace(-3, 4, 100) t = np.linspace(0.5, 5.0, 50) x_grid, t_grid = np.meshgrid(x, t, indexing='ij') dataset = Dataset(BurgersDelta, v=v, A=A) noise_range = np.arange(0.0, 1.01, 0.10) n_runs = 5 for noise_level in noise_range: for run in np.arange(n_runs): X_train, y_train = dataset.create_dataset(x_grid.reshape(-1, 1), t_grid.reshape(-1, 1), n_samples=1000, noise=noise_level, random=True, return_idx=False, random_state=run) estimator = Clustering(estimator=LassoLarsIC(fit_intercept=False)) config = {'n_in': 2, 'hidden_dims': [30, 30, 30, 30, 30], 'n_out': 1, 'library_function':library_1D_in, 'library_args':{'poly_order':2, 'diff_order': 3}, 'sparsity_estimator': estimator} model = DeepModDynamic(**config) optimizer = torch.optim.Adam(model.parameters(), betas=(0.99, 0.999), amsgrad=True) train_dynamic(model, X_train, y_train, optimizer, 10000, log_dir=f'runs/cluster_{noise_level:.2f}_run_{run}/')
# Settings for reproducibility np.random.seed(42) torch.manual_seed(0) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False # Making training set dataset = Dataset(DoubleSoliton, c=(5, 2), x0=(-3, -1)) x_sample = np.linspace(-7, 5, 50) t_sample = np.linspace(0.0, 1.0, 40) x_grid_sample, t_grid_sample = np.meshgrid(x_sample, t_sample, indexing='ij') X_train, y_train = dataset.create_dataset(x_grid_sample.reshape(-1, 1), t_grid_sample.reshape(-1, 1), n_samples=0, noise=0.1, normalize=True, random=True) # Configuring model network = Siren(2, [30, 30, 30, 30, 30], 1) # Function approximator library = Library1D(poly_order=2, diff_order=3) # Library function estimator = Threshold(0.1) #Clustering() # Sparse estimator constraint = LeastSquares() # How to constrain model = DeepMoD(network, library, estimator, constraint) # Putting it all in the model # Running model sparsity_scheduler = Periodic( initial_epoch=5000, periodicity=100) # Defining when to apply sparsity optimizer = torch.optim.Adam(model.parameters(),
torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False v = 0.1 A = 1.0 # Making grid x = np.linspace(-3, 4, 100) t = np.linspace(0.5, 5.0, 50) x_grid, t_grid = np.meshgrid(x, t, indexing='ij') # Making data dataset = Dataset(BurgersDelta, v=v, A=A) X_train, y_train = dataset.create_dataset(x_grid.reshape(-1, 1), t_grid.reshape(-1, 1), n_samples=2000, noise=0.1, random=True) # Running deepmod estimator = LassoLarsIC(fit_intercept=False) config = { 'n_in': 2, 'hidden_dims': [30, 30, 30, 30, 30], 'n_out': 1, 'library_function': library_1D_in, 'library_args': { 'poly_order': 2, 'diff_order': 2 }, 'sparsity_estimator': estimator
for run_idx in np.arange(n_runs): network = NN(2, [30, 30, 30, 30, 30], 1) library = Library1D(poly_order=2, diff_order=3) # Library function estimator = Threshold(0.1) # Sparse estimator constraint = LeastSquares() # How to constrain model = DeepMoD(network, library, estimator, constraint).to(device) # Putting it all in the model sparsity_scheduler = Periodic(periodicity=25, initial_epoch=10000) optimizer = torch.optim.Adam(model.parameters(), betas=(0.9, 0.999), amsgrad=True) # Defining optimizer X, y = dataset.create_dataset(x_grid.reshape(-1, 1), t_grid.reshape(-1, 1), n_samples=1000, noise=0.4, random=True, normalize=False) X, y = X.to(device), y.to(device) train(model, X, y, optimizer, sparsity_scheduler, log_dir=f'data_high_noise/baseline_run_{run_idx}/', write_iterations=25, max_iterations=5000, delta=0.00, patience=100) # Running
# Making grid x = np.linspace(-3, 4, 100) t = np.linspace(0.5, 5.0, 50) x_grid, t_grid = np.meshgrid(x, t, indexing='ij') dataset = Dataset(BurgersDelta, v=v, A=A) noise_range = np.arange(0.0, 1.61, 0.20) #np.arange(0.0, 0.51, 0.05) n_runs = 5 for noise_level in noise_range: for run in np.arange(n_runs): X_train, y_train = dataset.create_dataset( x_grid.reshape(-1, 1), t_grid.reshape(-1, 1), n_samples=1000, noise=noise_level, random=True, return_idx=False, random_state=run ) # use the same dataset for every run; only diff is in the network estimator = Clustering(estimator=LassoLarsIC(fit_intercept=False)) config = { 'n_in': 2, 'hidden_dims': [30, 30, 30, 30, 30], 'n_out': 1, 'library_function': library_1D_in, 'library_args': { 'poly_order': 2, 'diff_order': 3 }, 'sparsity_estimator': estimator
x_grid, t_grid = np.meshgrid(x, t) dataset = Dataset(BurgersDelta, v=0.1, A=1.0) dataset = Dataset(BurgersCos, v=0.1, a=0.1, b=0.1, k=2) dataset = Dataset(BurgersSawtooth, v=0.1) #dataset = Dataset(KdVSoliton, c=5.0, a = -1.0, b=1) dataset.generate_solution(x_grid, t_grid).shape dataset.parameters dataset.time_deriv(x_grid, t_grid).shape theta = dataset.library(x_grid.reshape(-1, 1), t_grid.reshape(-1, 1), poly_order=2, deriv_order=2) dt = dataset.time_deriv(x_grid.reshape(-1, 1), t_grid.reshape(-1, 1)) theta.shape np.linalg.lstsq(theta, dt, rcond=None)[0] X_train, y_train = dataset.create_dataset(x_grid, t_grid, n_samples=0, noise=0.05) y_train.shape from phimal_utilities.analysis import load_tensorboard