print 'Clustering 3 classes : \n' #nombre de clusters nb_cluster = 3 #N.B : difference qu'on souhaite evaluer sur les phonemes : separation consonnes/voyelles = 0, voisee/non-voisee = 1, categories = 2 #KMEANS non initialise 3 classes clus = MiniBatchKMeans(n_clusters = nb_cluster, init='k-means++', batch_size=700, n_init=10, max_no_improvement=10, verbose=0) f = open(fichier, "a") f.write("KMEANS non initialise 3 clusters\n") f.close() clus.fit(X) labels = clus.labels_ pourcentage(Y , nb_cluster, labels , dict_path , 0, fichier) pourcentage(Y , nb_cluster, labels , dict_path , 1, fichier) pourcentage(Y , nb_cluster, labels , dict_path , 2, fichier) #KMEANS initialise 3 classes sous = initialisation_centres(nb_cluster, X) clus = MiniBatchKMeans(n_clusters = nb_cluster, init=sous, batch_size=700, n_init=10, max_no_improvement=10, verbose=0) f = open(fichier, "a") f.write("KMEANS initialise 3 clusters\n") f.close() clus.fit(X) labels = clus.labels_ pourcentage(Y , nb_cluster, labels , dict_path , 0, fichier) pourcentage(Y , nb_cluster, labels , dict_path , 1, fichier) pourcentage(Y , nb_cluster, labels , dict_path , 2, fichier)
print "Clustering miniBatch K-means non supervise : \n" # nombre de clusters nb_cluster = 3 # N.B : difference qu'on souhaite evaluer sur les phonemes : separation consonnes/voyelles = 0, voisee/non-voisee = 1, categories = 2 # KMEANS non initialise 3 classes clus = MiniBatchKMeans( n_clusters=nb_cluster, init="k-means++", batch_size=700, n_init=10, max_no_improvement=10, verbose=0 ) f = open(fichier, "a") f.write("KMEANS non initialise 3 clusters\n") f.close() clus.fit(X) labels = clus.labels_ pourcentage(Y, nb_cluster, labels, path_dict, 0, fichier) pourcentage(Y, nb_cluster, labels, path_dict, 1, fichier) # KMEANS initialise 3 classes print "Clustering miniBatch k-means supervise : \n" sous = initialisation_centres(nb_cluster, X) clus = MiniBatchKMeans(n_clusters=nb_cluster, init=sous, batch_size=700, n_init=10, max_no_improvement=10, verbose=0) f = open(fichier, "a") f.write("KMEANS initialise 3 clusters\n") f.close() clus.fit(X) labels = clus.labels_ pourcentage(Y, nb_cluster, labels, path_dict, 0, fichier) pourcentage(Y, nb_cluster, labels, path_dict, 1, fichier) # Agglomerative clustering 3 classes
#N.B : difference qu'on souhaite evaluer sur les phonemes : separation consonnes/voyelles = 0, voisee/non-voisee = 1, categories = 2 #KMEANS non initialise 3 classes clus = MiniBatchKMeans(n_clusters=nb_cluster, init='k-means++', batch_size=700, n_init=10, max_no_improvement=10, verbose=0) f = open(fichier, "a") f.write("KMEANS non initialise 3 clusters\n") f.close() clus.fit(X) labels = clus.labels_ pourcentage(Y, nb_cluster, labels, path_dict, 0, fichier) pourcentage(Y, nb_cluster, labels, path_dict, 1, fichier) #KMEANS initialise 3 classes print 'Clustering miniBatch k-means supervise : \n' sous = initialisation_centres(nb_cluster, X) clus = MiniBatchKMeans(n_clusters=nb_cluster, init=sous, batch_size=700, n_init=10, max_no_improvement=10, verbose=0) f = open(fichier, "a") f.write("KMEANS initialise 3 clusters\n") f.close() clus.fit(X)
# Read mat file and align file. filename = '../data/Bref80_L4M01.mat' alignfile = '../data/Bref80_L4M01.aligned' fbank = sio.loadmat(filename)['d1'] csv = "../resultats/resultatsClustering/matlabFbank.csv" classementPath = "../data/classement" hop_span = 0.01 Y = utiles.getY(fbank, alignfile, hop_span) #Kmeans without initialization 3 classes (consonnes et voyelles) n_clusters = 3 kmeans = KMeans(init='k-means++', n_clusters=n_clusters, n_init=10) kmeans.fit(fbank) centroids = kmeans.cluster_centers_ labels = kmeans.labels_ analyse.pourcentage(Y, n_clusters, labels, classementPath, 0, csv) #Kmeans without initialization 3 classes n_clusters = 3 kmeans = KMeans(init='k-means++', n_clusters=n_clusters, n_init=10) kmeans.fit(fbank) centroids = kmeans.cluster_centers_ labels = kmeans.labels_ analyse.pourcentage(Y, n_clusters, labels, classementPath, 1, csv) #Kmeans withous initialzation 6 classes n_clusters = 6 kmeans = KMeans(init='k-means++', n_clusters=n_clusters, n_init=10) kmeans.fit(fbank) centroids = kmeans.cluster_centers_
# Read mat file and align file. filename = '../data/Bref80_L4M01.mat' alignfile = '../data/Bref80_L4M01.aligned' fbank = sio.loadmat(filename)['d1'] csv = "../resultats/resultatsClustering/matlabFbank.csv" classementPath = "../data/classement" hop_span = 0.01 Y = utiles.getY(fbank,alignfile,hop_span) #Kmeans without initialization 3 classes (consonnes et voyelles) n_clusters = 3 kmeans = KMeans(init='k-means++', n_clusters=n_clusters, n_init=10) kmeans.fit(fbank) centroids = kmeans.cluster_centers_ labels = kmeans.labels_ analyse.pourcentage(Y,n_clusters,labels,classementPath,0,csv) #Kmeans without initialization 3 classes n_clusters = 3 kmeans = KMeans(init='k-means++', n_clusters=n_clusters, n_init=10) kmeans.fit(fbank) centroids = kmeans.cluster_centers_ labels = kmeans.labels_ analyse.pourcentage(Y,n_clusters,labels,classementPath,1,csv) #Kmeans withous initialzation 6 classes n_clusters = 6 kmeans = KMeans(init='k-means++', n_clusters=n_clusters, n_init=10) kmeans.fit(fbank) centroids = kmeans.cluster_centers_