Exemple #1
0
    def test_save_optimum_pipe_custom_element(self):
        tmp_path = os.path.join(self.tmp_folder_path, 'optimum_pipypipe')
        settings = OutputSettings(project_folder=tmp_path,
                                  overwrite_results=True)

        my_pipe = Hyperpipe('hyperpipe',
                            optimizer='random_grid_search',
                            optimizer_params={'n_configurations': 1},
                            metrics=['accuracy', 'precision', 'recall'],
                            best_config_metric='f1_score',
                            outer_cv=KFold(n_splits=2),
                            inner_cv=KFold(n_splits=2),
                            verbosity=1,
                            output_settings=settings)
        my_pipe += PipelineElement('KerasDnnClassifier', {},
                                   epochs=1,
                                   hidden_layer_sizes=[5])
        my_pipe.fit(self.__X, self.__y)
        model_path = os.path.join(my_pipe.output_settings.results_folder,
                                  'photon_best_model.photon')
        self.assertTrue(os.path.exists(model_path))

        # check if load_optimum_pipe also works
        # check if we have the meta information recovered
        loaded_optimum_pipe = Hyperpipe.load_optimum_pipe(model_path)
        self.assertIsNotNone(loaded_optimum_pipe._meta_information)
Exemple #2
0
    def test_register_element(self):
        with self.assertRaises(ValueError):
            self.registry.register('MyCustomEstimator', 'custom_estimator.CustomEstimator', 'WrongType')

        self.registry.register('MyCustomEstimator', 'custom_estimator.CustomEstimator', 'Estimator')

        self.registry.activate()
        settings = OutputSettings(save_output=False, project_folder='./tmp/')

        # DESIGN YOUR PIPELINE
        pipe = Hyperpipe('custom_estimator_pipe',
                         optimizer='random_grid_search',
                         optimizer_params={'n_configurations': 2},
                         metrics=['accuracy', 'precision', 'recall', 'balanced_accuracy'],
                         best_config_metric='accuracy',
                         outer_cv=KFold(n_splits=2),
                         inner_cv=KFold(n_splits=2),
                         verbosity=1,
                         output_settings=settings)

        pipe += PipelineElement('MyCustomEstimator')

        pipe.fit(np.random.randn(30, 30), np.random.randint(0, 2, 30))

        self.registry.delete('MyCustomEstimator')

        os.remove(os.path.join(self.custom_folder, 'CustomElements.json'))
Exemple #3
0
    def test_huge_combinations(self):
        hp = Hyperpipe(
            "huge_combinations",
            metrics=["accuracy"],
            best_config_metric="accuracy",
            output_settings=OutputSettings(
                project_folder=self.tmp_folder_path),
        )

        hp += PipelineElement("PCA", hyperparameters={"n_components": [5, 10]})
        stack = Stack("ensemble")
        for i in range(20):
            stack += PipelineElement(
                "SVC",
                hyperparameters={
                    "C": FloatRange(0.001, 5),
                    "kernel": ["linear", "rbf", "sigmoid", "polynomial"],
                },
            )
        hp += stack
        hp += PipelineElement(
            "SVC", hyperparameters={"kernel": ["linear", "rbf", "sigmoid"]})
        X, y = load_breast_cancer(True)
        with self.assertRaises(Warning):
            hp.fit(X, y)
Exemple #4
0
    def generate_hyperpipes(self):
        if self.atlas_info_object.roi_names_runtime:
            self.rois = self.atlas_info_object.roi_names_runtime
            #
            # self.outer_pipe = Hyperpipe(self.atlas_name + 'outer_pipe', optimizer='grid_search',
            #                        metrics=['accuracy'], hyperparameter_specific_config_cv_object=
            #                        ShuffleSplit(n_splits=1, test_size=0.2, random_state=3),
            #                        hyperparameter_search_cv_object=
                #                        ShuffleSplit(n_splits=1, test_size=0.2, random_state=3),
                #                        eval_final_performance=True)

            inner_pipe_list = {}
            for i in range(len(self.rois)):
                tmp_inner_pipe = Hyperpipe(self.atlas_name + '_' + str(self.rois[i]), optimizer='grid_search',
                                           inner_cv=ShuffleSplit(n_splits=1, test_size=0.2, random_state=3),
                                           eval_final_performance=False, verbose=logging.verbosity_level,
                                           best_config_metric=self.best_config_metric, metrics=self.metrics)

                # at first set a filter element

                roi_filter_element = RoiFilterElement(i)
                tmp_inner_pipe.filter_element = roi_filter_element

                # secondly add all other items
                for pipe_item in self.hyperpipe_elements:
                    tmp_inner_pipe += PipelineElement.create(pipe_item[0], pipe_item[1], **pipe_item[2])

                inner_pipe_list[self.rois[i]] = tmp_inner_pipe

            self.pipeline_fusion = Stack('multiple_source_pipes', inner_pipe_list.values(), voting=False)
Exemple #5
0
    def test_three_levels_of_feature_importances(self):
        hyperpipe = Hyperpipe(
            "fimps",
            inner_cv=KFold(n_splits=4),
            outer_cv=KFold(n_splits=3),
            metrics=["mean_absolute_error", "mean_squared_error"],
            best_config_metric="mean_squared_error",
            output_settings=OutputSettings(
                project_folder=self.tmp_folder_path),
        )
        hyperpipe += PipelineElement("StandardScaler")
        hyperpipe += PipelineElement("DecisionTreeRegressor")
        X, y = load_boston(True)
        hyperpipe.fit(X, y)

        exepcted_nr_of_feature_importances = X.shape[1]
        self.assertTrue(
            len(hyperpipe.results.best_config_feature_importances) ==
            exepcted_nr_of_feature_importances)

        for outer_fold in hyperpipe.results.outer_folds:
            self.assertTrue(
                len(outer_fold.best_config.best_config_score.
                    feature_importances) == exepcted_nr_of_feature_importances)
            for inner_fold in outer_fold.best_config.inner_folds:
                self.assertTrue(
                    len(inner_fold.feature_importances) ==
                    exepcted_nr_of_feature_importances)
Exemple #6
0
    def test_sanity(self):
        # make sure that no metrics means raising an error
        with self.assertRaises(ValueError):
            hyperpipe = Hyperpipe("hp_name", inner_cv=self.inner_cv_object)

        # make sure that if no best config metric is given, PHOTON raises a warning
        with self.assertRaises(Warning):
            hyperpipe = Hyperpipe("hp_name",
                                  inner_cv=self.inner_cv_object,
                                  metrics=["accuracy", "f1_score"])

        with self.assertRaises(Warning):
            hyperpipe = Hyperpipe("hp_name",
                                  inner_cv=self.inner_cv_object,
                                  best_config_metric=["accuracy", "f1_score"])

        with self.assertRaises(NotImplementedError):
            hyperpipe = Hyperpipe("hp_name",
                                  inner_cv=self.inner_cv_object,
                                  best_config_metric='accuracy',
                                  metrics=["accuracy"],
                                  calculate_metrics_across_folds=False,
                                  calculate_metrics_per_fold=False)

        with self.assertRaises(AttributeError):
            hyperpipe = Hyperpipe("hp_name",
                                  best_config_metric='accuracy',
                                  metrics=["accuracy"])

        data = np.random.random((500, 50))

        with self.assertRaises(ValueError):
            targets = np.random.randint(0, 1, (500, 2))
            self.hyperpipe.fit(data, targets)
Exemple #7
0
    def test_register_element(self):
        with self.assertRaises(ValueError):
            self.registry.register("MyCustomEstimator",
                                   "custom_estimator.CustomEstimator",
                                   "WrongType")

        self.registry.register("MyCustomEstimator",
                               "custom_estimator.CustomEstimator", "Estimator")

        self.registry.activate()
        settings = OutputSettings(save_output=False, project_folder="./tmp/")

        # DESIGN YOUR PIPELINE
        pipe = Hyperpipe(
            "custom_estimator_pipe",
            optimizer="random_grid_search",
            optimizer_params={"n_configurations": 2},
            metrics=["accuracy", "precision", "recall", "balanced_accuracy"],
            best_config_metric="accuracy",
            outer_cv=KFold(n_splits=2),
            inner_cv=KFold(n_splits=2),
            verbosity=1,
            output_settings=settings,
        )

        pipe += PipelineElement("MyCustomEstimator")

        pipe.fit(np.random.randn(30, 30), np.random.randint(0, 2, 30))

        self.registry.delete("MyCustomEstimator")

        os.remove(os.path.join(self.custom_folder, "CustomElements.json"))
Exemple #8
0
    def setUp(self):
        self.time_limit = 60 * 2

        settings = OutputSettings(project_folder="./tmp/")

        self.smac_helper = {"data": None, "initial_runs": None}

        # DESIGN YOUR PIPELINE
        self.pipe = Hyperpipe(
            "basic_svm_pipe",  # the name of your pipeline
            optimizer="smac",  # which optimizer PHOTON shall use
            optimizer_params={
                "wallclock_limit": self.time_limit,
                "smac_helper": self.smac_helper,
                "run_limit": 20,
            },
            metrics=["accuracy"],
            # the performance metrics of your interest
            best_config_metric="accuracy",
            inner_cv=KFold(
                n_splits=3
            ),  # test each configuration ten times respectively,
            verbosity=0,
            output_settings=settings,
        )
Exemple #9
0
        def setUp(self):
            self.s_split = ShuffleSplit(n_splits=3,
                                        test_size=0.2,
                                        random_state=42)

            self.time_limit = 20

            settings = OutputSettings(project_folder='./tmp/')

            self.smac_helper = {"data": None, "initial_runs": None}

            # Scenario object
            scenario_dict = {
                "run_obj": "quality",
                "deterministic": "true",
                "wallclock_limit": self.time_limit
            }

            # DESIGN YOUR PIPELINE
            self.pipe = Hyperpipe('basic_svm_pipe',
                                  optimizer='smac',
                                  optimizer_params={
                                      'facade': SMAC4HPO,
                                      'scenario_dict': scenario_dict,
                                      'rng': 42,
                                      'smac_helper': self.smac_helper
                                  },
                                  metrics=['accuracy'],
                                  random_seed=42,
                                  best_config_metric='accuracy',
                                  inner_cv=self.s_split,
                                  verbosity=0,
                                  output_settings=settings)
Exemple #10
0
 def setUp(self):
     super(InnerFoldTests, self).setUp()
     self.pipe = PhotonPipeline([
         ("StandardScaler", PipelineElement("StandardScaler")),
         ("PCA", PipelineElement("PCA")),
         ("RidgeClassifier", PipelineElement("RidgeClassifier")),
     ])
     self.config = {
         "PCA__n_components": 5,
         "RidgeClassifier__solver": "svd",
         "RidgeClassifier__random_state": 42,
     }
     self.outer_fold_id = "TestID"
     self.inner_cv = KFold(n_splits=4)
     self.X, self.y = load_breast_cancer(True)
     self.cross_validation = Hyperpipe.CrossValidation(
         self.inner_cv, None, True, 0.2, True, False)
     self.cross_validation.inner_folds = {
         self.outer_fold_id: {
             i: FoldInfo(i, i + 1, train, test)
             for i, (train,
                     test) in enumerate(self.inner_cv.split(self.X, self.y))
         }
     }
     self.optimization = Hyperpipe.Optimization(
         "grid_search", {}, ["accuracy", "recall", "specificity"],
         "accuracy", None)
    def test_neuro_hyperpipe_parallelized_batched_caching(self):

        cache_path = self.cache_folder_path

        self.hyperpipe = Hyperpipe('complex_case',
                                   inner_cv=KFold(n_splits=5),
                                   outer_cv=KFold(n_splits=3),
                                   optimizer='grid_search',
                                   cache_folder=cache_path,
                                   metrics=['mean_squared_error'],
                                   best_config_metric='mean_squared_error',
                                   output_settings=OutputSettings(
                                       project_folder=self.tmp_folder_path))

        nb = ParallelBranch("SubjectCaching", nr_of_processes=1)
        nb += PipelineElement.create("ResampleImages",
                                     StupidAdditionTransformer(),
                                     {'voxel_size': [3, 5, 10]},
                                     batch_size=4)
        self.hyperpipe += nb

        self.hyperpipe += PipelineElement("StandardScaler", {})
        self.hyperpipe += PipelineElement("PCA", {'n_components': [3, 4]})
        self.hyperpipe += PipelineElement("SVR", {'kernel': ['rbf', 'linear']})

        self.hyperpipe.fit(self.X, self.y)

        # assert cache is empty again
        nr_of_p_files = len(
            glob.glob(os.path.join(self.hyperpipe.cache_folder, "*.p")))
        print(nr_of_p_files)
        self.assertTrue(nr_of_p_files == 0)
Exemple #12
0
 def test_best_config_metric(self):
     my_pipe_optimizer = Hyperpipe.Optimization('grid_search', {}, [],
                                                'balanced_accuracy', None)
     self.assertTrue(my_pipe_optimizer.maximize_metric)
     my_pipe_optimizer = Hyperpipe.Optimization('grid_search', {}, [],
                                                'mean_squared_error', None)
     self.assertFalse(my_pipe_optimizer.maximize_metric)
Exemple #13
0
 def test_recursive_disabling(self):
     list_of_elements_to_detect = self.setup_crazy_pipe()
     self.hyperpipe._pipe = Branch.prepare_photon_pipe(
         list_of_elements_to_detect)
     Hyperpipe.disable_multiprocessing_recursively(self.hyperpipe._pipe)
     self.assertTrue(
         [i.nr_of_processes == 1 for i in list_of_elements_to_detect])
Exemple #14
0
 def setUp(self):
     super(InnerFoldTests, self).setUp()
     self.pipe = PhotonPipeline([
         ('StandardScaler', PipelineElement('StandardScaler')),
         ('PCA', PipelineElement('PCA')),
         ('RidgeClassifier', PipelineElement('RidgeClassifier'))
     ])
     self.config = {
         'PCA__n_components': 5,
         'RidgeClassifier__solver': 'svd',
         'RidgeClassifier__random_state': 42
     }
     self.outer_fold_id = 'TestID'
     self.inner_cv = KFold(n_splits=4)
     self.X, self.y = load_breast_cancer(return_X_y=True)
     self.cross_validation = Hyperpipe.CrossValidation(
         self.inner_cv, None, True, 0.2, True, False, False, None)
     self.cross_validation.inner_folds = {
         self.outer_fold_id: {
             i: FoldInfo(i, i + 1, train, test)
             for i, (train,
                     test) in enumerate(self.inner_cv.split(self.X, self.y))
         }
     }
     self.optimization = Hyperpipe.Optimization(
         'grid_search', {}, ['accuracy', 'recall', 'specificity'],
         'accuracy', None)
Exemple #15
0
 def create_hyperpipe(self):
     self.hyperpipe = Hyperpipe('optimizer_test',
                                output_settings=OutputSettings(project_folder='./tmp'),
                                metrics=['accuracy'],
                                best_config_metric='accuracy',
                                inner_cv=KFold(n_splits=3),
                                outer_cv=ShuffleSplit(n_splits=2),
                                optimizer=self.optimizer_name)
Exemple #16
0
        def test_one_hyperpipe(learning_curves, learning_curves_cut):
            if learning_curves and learning_curves_cut is None:
                learning_curves_cut = FloatRange(0, 1, 'range', 0.2)
            output_settings = OutputSettings(
                project_folder=self.tmp_folder_path, save_output=False)
            test_hyperpipe = Hyperpipe(
                'test_pipe',
                learning_curves=learning_curves,
                learning_curves_cut=learning_curves_cut,
                metrics=['accuracy', 'recall', 'specificity'],
                best_config_metric='accuracy',
                inner_cv=self.inner_cv,
                output_settings=output_settings)

            self.assertEqual(test_hyperpipe.cross_validation.learning_curves,
                             learning_curves)
            if learning_curves:
                self.assertEqual(
                    test_hyperpipe.cross_validation.learning_curves_cut,
                    learning_curves_cut)
            else:
                self.assertIsNone(
                    test_hyperpipe.cross_validation.learning_curves_cut)

            test_hyperpipe += PipelineElement('StandardScaler')
            test_hyperpipe += PipelineElement('PCA', {'n_components': [1, 2]},
                                              random_state=42)
            test_hyperpipe += PipelineElement('SVC', {
                'C': [0.1],
                'kernel': ['linear']
            },
                                              random_state=42)
            test_hyperpipe.fit(self.X, self.y)
            config_results = test_hyperpipe.results_handler.results.outer_folds[
                0].tested_config_list
            config_num = len(config_results)
            for config_nr in range(config_num):
                for inner_fold_nr in range(self.inner_cv.n_splits):
                    curves = config_results[config_nr].inner_folds[
                        inner_fold_nr].learning_curves
                    if learning_curves:
                        self.assertEqual(len(curves),
                                         len(learning_curves_cut.values))
                        for learning_point_nr in range(
                                len(learning_curves_cut.values)):
                            test_metrics = list(
                                curves[learning_point_nr][1].keys())
                            train_metrics = list(
                                curves[learning_point_nr][2].keys())
                            self.assertEqual(
                                test_hyperpipe.optimization.metrics,
                                test_metrics)
                            self.assertEqual(
                                test_hyperpipe.optimization.metrics,
                                train_metrics)
                    else:
                        self.assertEqual(curves, [])
    def test_shall_continue(self):
        X, y = load_boston(True)

        inner_fold_length = 7
        # DESIGN YOUR PIPELINE
        my_pipe = Hyperpipe(
            name="performance_pipe",
            optimizer="random_search",
            optimizer_params={"limit_in_minutes": 2},
            metrics=["mean_squared_error"],
            best_config_metric="mean_squared_error",
            # outer_cv=KFold(n_splits=2, shuffle=True),
            inner_cv=KFold(n_splits=inner_fold_length),
            eval_final_performance=True,
            performance_constraints=[self.constraint_object],
        )

        my_pipe += PipelineElement("StandardScaler")
        my_pipe += PipelineElement(
            "RandomForestRegressor",
            hyperparameters={"n_estimators": IntegerRange(5, 50)},
        )

        # NOW TRAIN YOUR PIPELINE
        my_pipe.fit(X, y)

        # clip config results
        results = my_pipe.results.outer_folds[0].tested_config_list

        configs = []

        for i in range(len(configs) - 1):
            configs.append([
                x.validation.metrics["mean_squared_error"]
                for x in results[i].inner_folds
            ])

        threshold = np.inf
        for val in configs[:10]:
            challenger = np.mean(val)
            if threshold > challenger:
                threshold = challenger

        originals_for_std = configs[:10]
        for i, val in enumerate(configs[10:]):
            std = np.mean([np.std(x) for x in originals_for_std])
            for j, v in enumerate(val):

                if np.mean(val[:j + 1]) > threshold + std:
                    self.assertEqual(v, val[-1])
                    continue
                if len(val) == inner_fold_length - 1 and np.mean(
                        val) < threshold + std:
                    threshold = np.mean(val)
            if len(val) > 1:
                originals_for_std.append(val)
Exemple #18
0
    def test_no_metrics(self):
        # make sure that no metrics means raising an error
        with self.assertRaises(ValueError):
            hyperpipe = Hyperpipe("hp_name", inner_cv=self.inner_cv_object)

        # make sure that if no best config metric is given, PHOTON raises a warning
        with self.assertRaises(Warning):
            hyperpipe = Hyperpipe("hp_name",
                                  inner_cv=self.inner_cv_object,
                                  metrics=["accuracy", "f1_score"])
Exemple #19
0
    def test_metrics_and_aggreation_eval_performance_false(self):
        self.hyperpipe = Hyperpipe('test_prediction_collection',
                                   inner_cv=KFold(n_splits=self.inner_fold_nr),
                                   metrics=['mean_absolute_error', 'mean_squared_error'],
                                   eval_final_performance=False,
                                   best_config_metric='mean_absolute_error',
                                   calculate_metrics_across_folds=True,
                                   output_settings=OutputSettings(project_folder=self.tmp_folder_path))

        self.test_metrics_and_aggregations()
    def setUp(self):
        """
        Set default start settings for all tests.
        """
        super(ResultsHandlerTest, self).setUp()

        self.files = [
            "best_config_predictions.csv",
            "time_monitor.csv",
            "time_monitor_pie.png",
            "photon_result_file.p",
            "photon_summary.txt",
            "photon_best_model.photon",
            "optimum_pipe_feature_importances_backmapped.npz",
            "photon_code.py",
            "optimizer_history.png",
        ]

        self.output_settings = OutputSettings(
            project_folder=self.tmp_folder_path, save_output=True)

        self.ss_pipe_element = PipelineElement("StandardScaler")
        self.pca_pipe_element = PipelineElement("PCA",
                                                {"n_components": [1, 2]},
                                                random_state=42)
        self.svc_pipe_element = PipelineElement(
            "SVC",
            {
                "C": [0.1],
                "kernel": ["linear"]
            },  # 'rbf', 'sigmoid']
            random_state=42,
        )

        self.inner_cv_object = KFold(n_splits=3)
        self.metrics = ["accuracy", "recall", "precision"]
        self.best_config_metric = "accuracy"
        self.hyperpipe = Hyperpipe(
            "god",
            inner_cv=self.inner_cv_object,
            metrics=self.metrics,
            best_config_metric=self.best_config_metric,
            outer_cv=KFold(n_splits=2),
            output_settings=self.output_settings,
            verbosity=1,
        )
        self.hyperpipe += self.ss_pipe_element
        self.hyperpipe += self.pca_pipe_element
        self.hyperpipe.add(self.svc_pipe_element)

        dataset = load_breast_cancer()
        self.__X = dataset.data
        self.__y = dataset.target

        self.hyperpipe.fit(self.__X, self.__y)
    def test_shall_continue(self):
        X, y = load_boston(return_X_y=True)

        inner_fold_length = 7
        # DESIGN YOUR PIPELINE
        my_pipe = Hyperpipe(
            name='performance_pipe',
            optimizer='random_search',
            optimizer_params={'limit_in_minutes': 2},
            metrics=['mean_squared_error'],
            best_config_metric='mean_squared_error',
            inner_cv=KFold(n_splits=inner_fold_length),
            eval_final_performance=True,
            output_settings=OutputSettings(project_folder='./tmp'),
            performance_constraints=[self.constraint_object])

        my_pipe += PipelineElement('StandardScaler')
        my_pipe += PipelineElement(
            'RandomForestRegressor',
            hyperparameters={'n_estimators': IntegerRange(5, 50)})

        # NOW TRAIN YOUR PIPELINE
        my_pipe.fit(X, y)

        # clip config results
        results = my_pipe.results.outer_folds[0].tested_config_list

        configs = []

        for i in range(len(configs) - 1):
            configs.append([
                x.validation.metrics['mean_squared_error']
                for x in results[i].inner_folds
            ])

        threshold = np.inf
        for val in configs[:10]:
            challenger = np.mean(val)
            if threshold > challenger:
                threshold = challenger

        originals_for_std = configs[:10]
        for i, val in enumerate(configs[10:]):
            std = np.mean([np.std(x) for x in originals_for_std])
            for j, v in enumerate(val):

                if np.mean(val[:j + 1]) > threshold + std:
                    self.assertEqual(v, val[-1])
                    continue
                if len(val) == inner_fold_length - 1 and np.mean(
                        val) < threshold + std:
                    threshold = np.mean(val)
            if len(val) > 1:
                originals_for_std.append(val)
Exemple #22
0
 def setup_hyperpipe(self, output_settings=None):
     if output_settings is None:
         output_settings = OutputSettings(
             project_folder=self.tmp_folder_path)
     self.hyperpipe = Hyperpipe('god',
                                inner_cv=self.inner_cv_object,
                                metrics=self.metrics,
                                best_config_metric=self.best_config_metric,
                                output_settings=output_settings)
     self.hyperpipe += self.ss_pipe_element
     self.hyperpipe += self.pca_pipe_element
     self.hyperpipe.add(self.svc_pipe_element)
Exemple #23
0
    def test_inverse_transform(self):
        settings = OutputSettings(
            project_folder=self.tmp_folder_path, overwrite_results=True
        )

        # DESIGN YOUR PIPELINE
        pipe = Hyperpipe(
            "Limbic_System",
            optimizer="grid_search",
            metrics=["mean_absolute_error"],
            best_config_metric="mean_absolute_error",
            outer_cv=ShuffleSplit(n_splits=1, test_size=0.2),
            inner_cv=ShuffleSplit(n_splits=1, test_size=0.2),
            verbosity=2,
            cache_folder=self.cache_folder_path,
            eval_final_performance=True,
            output_settings=settings,
        )

        # PICK AN ATLAS
        atlas = PipelineElement(
            "BrainAtlas",
            rois=["Hippocampus_L", "Amygdala_L"],
            atlas_name="AAL",
            extract_mode="vec",
            batch_size=20,
        )

        # EITHER ADD A NEURO BRANCH OR THE ATLAS ITSELF
        neuro_branch = NeuroBranch("NeuroBranch")
        neuro_branch += atlas
        pipe += neuro_branch

        pipe += PipelineElement("LinearSVR")

        pipe.fit(self.X, self.y)

        # GET IMPORTANCE SCORES
        handler = ResultsHandler(pipe.results)
        importance_scores_optimum_pipe = handler.results.best_config_feature_importances

        manual_img, _, _ = pipe.optimum_pipe.inverse_transform(
            importance_scores_optimum_pipe, None
        )
        img = image.load_img(
            os.path.join(
                self.tmp_folder_path,
                "Limbic_System_results/optimum_pipe_feature_importances_backmapped.nii.gz",
            )
        )
        self.assertTrue(np.array_equal(manual_img.get_data(), img.get_data()))
Exemple #24
0
    def test_huge_combinations(self):
        hp = Hyperpipe('huge_combinations', inner_cv=KFold(n_splits=3), metrics=['accuracy'], best_config_metric='accuracy',
                       output_settings=OutputSettings(project_folder=self.tmp_folder_path))

        hp += PipelineElement("PCA", hyperparameters={'n_components': [5, 10]})
        stack = Stack('ensemble')
        for i in range(20):
            stack += PipelineElement('SVC', hyperparameters={'C': FloatRange(0.001, 5),
                                                             'kernel': ["linear", "rbf", "sigmoid", "polynomial"]})
        hp += stack
        hp += PipelineElement("SVC", hyperparameters={'kernel': ["linear", "rbf", "sigmoid"]})
        X, y = load_breast_cancer(return_X_y=True)
        with self.assertRaises(Warning):
            hp.fit(X, y)
Exemple #25
0
 def setUp(self):
     super(ResultHandlerAndHelperTests, self).setUp()
     self.inner_fold_nr = 10
     self.outer_fold_nr = 5
     
     self.y_true = np.linspace(1, 100, 100)
     self.X = self.y_true
     
     self.hyperpipe = Hyperpipe('test_prediction_collection',
                                inner_cv=KFold(n_splits=self.inner_fold_nr),
                                outer_cv=KFold(n_splits=self.outer_fold_nr),
                                metrics=['mean_absolute_error', 'mean_squared_error'],
                                best_config_metric='mean_absolute_error',
                                output_settings=OutputSettings(project_folder=self.tmp_folder_path),
                                verbosity=0)
    def test_class_with_data_preproc(self):
        """
        Test for simple pipeline with data.
        """

        X, y = load_breast_cancer(return_X_y=True)

        # DESIGN YOUR PIPELINE
        my_pipe = Hyperpipe(
            'basic_svm_pipe',
            optimizer='grid_search',
            metrics=['accuracy', 'precision', 'recall', 'balanced_accuracy'],
            best_config_metric='accuracy',
            eval_final_performance=False,
            outer_cv=KFold(n_splits=2),
            inner_cv=KFold(n_splits=3),
            verbosity=1,
            random_seed=42)

        preprocessing = Preprocessing()
        preprocessing += PipelineElement("LabelEncoder")
        my_pipe += preprocessing

        # ADD ELEMENTS TO YOUR PIPELINE
        # first normalize all features
        my_pipe.add(PipelineElement('StandardScaler'))

        # then do feature selection using a PCA,
        my_pipe += PipelineElement(
            'PCA',
            hyperparameters={'n_components': IntegerRange(10, 12)},
            test_disabled=True)

        # engage and optimize the good old SVM for Classification
        my_pipe += PipelineElement(
            'SVC',
            hyperparameters={'kernel': Categorical(['rbf', 'linear'])},
            C=2,
            gamma='scale')

        # NOW TRAIN YOUR PIPELINE
        my_pipe.fit(X, y)

        json_transformer = JsonTransformer()

        pipe_json = json_transformer.create_json(my_pipe)
        a = elements_to_dict(my_pipe.copy_me())
        my_pipe_reload = json_transformer.from_json(pipe_json)
        pipe_json_reload = pipe_json = json_transformer.create_json(
            my_pipe_reload)

        self.assertEqual(pipe_json, pipe_json_reload)
        my_pipe_reload.fit(X, y)

        self.assertDictEqual(my_pipe.best_config, my_pipe_reload.best_config)

        self.assertDictEqual(elements_to_dict(my_pipe.copy_me()),
                             elements_to_dict(my_pipe_reload.copy_me()))
Exemple #27
0
    def setUp(self):
        """
        Set default start settings for all tests.
        """
        super(ResultsHandlerTest, self).setUp()

        self.files = [
            'best_config_predictions.csv', 'time_monitor.csv',
            'time_monitor_pie.png', 'photon_result_file.p',
            'photon_summary.txt', 'photon_best_model.photon',
            'optimum_pipe_feature_importances_backmapped.npz',
            'photon_code.py', 'optimizer_history.png'
        ]

        self.output_settings = OutputSettings(
            project_folder=self.tmp_folder_path, save_output=True)

        self.ss_pipe_element = PipelineElement('StandardScaler')
        self.pca_pipe_element = PipelineElement('PCA',
                                                {'n_components': [1, 2]},
                                                random_state=42)
        self.svc_pipe_element = PipelineElement(
            'SVC',
            {
                'C': [0.1],
                'kernel': ['linear']
            },  # 'rbf', 'sigmoid']
            random_state=42)

        self.inner_cv_object = KFold(n_splits=3)
        self.metrics = ["accuracy", 'recall', 'precision']
        self.best_config_metric = "accuracy"
        self.hyperpipe = Hyperpipe('god',
                                   inner_cv=self.inner_cv_object,
                                   metrics=self.metrics,
                                   best_config_metric=self.best_config_metric,
                                   outer_cv=KFold(n_splits=2),
                                   output_settings=self.output_settings,
                                   verbosity=1)
        self.hyperpipe += self.ss_pipe_element
        self.hyperpipe += self.pca_pipe_element
        self.hyperpipe.add(self.svc_pipe_element)

        dataset = load_breast_cancer()
        self.__X = dataset.data
        self.__y = dataset.target

        self.hyperpipe.fit(self.__X, self.__y)
    def create_hyperpipe(self):
        # this is needed here for the parallelisation
        from photonai.base import Hyperpipe, PipelineElement, OutputSettings
        from photonai.optimization import FloatRange, Categorical, IntegerRange
        from sklearn.model_selection import GroupKFold
        from sklearn.model_selection import KFold

        settings = OutputSettings(mongodb_connect_url='mongodb://localhost:27017/photon_results',
                                  project_folder=self.tmp_folder_path)
        my_pipe = Hyperpipe('permutation_test_1',
                            optimizer='grid_search',
                            metrics=['accuracy', 'precision', 'recall'],
                            best_config_metric='accuracy',
                            outer_cv=GroupKFold(n_splits=2),
                            inner_cv=KFold(n_splits=2),
                            calculate_metrics_across_folds=True,
                            eval_final_performance=True,
                            verbosity=1,
                            output_settings=settings)

        # Add transformer elements
        my_pipe += PipelineElement("StandardScaler", hyperparameters={},
                                   test_disabled=False, with_mean=True, with_std=True)

        my_pipe += PipelineElement("PCA", hyperparameters={'n_components': IntegerRange(3, 5)},
                                   test_disabled=False)

        # Add estimator
        my_pipe += PipelineElement("SVC", hyperparameters={'kernel': ['linear', 'rbf']},  # C': FloatRange(0.1, 5),
                                   gamma='scale', max_iter=1000000)

        return my_pipe
Exemple #29
0
    def test_metrics_and_aggregations_no_outer_cv_but_eval_performance_true(
            self):
        self.hyperpipe = Hyperpipe(
            "test_prediction_collection",
            outer_cv=KFold(n_splits=self.outer_fold_nr),
            inner_cv=KFold(n_splits=self.inner_fold_nr),
            metrics=["mean_absolute_error", "mean_squared_error"],
            eval_final_performance=False,
            best_config_metric="mean_absolute_error",
            calculate_metrics_per_fold=True,
            calculate_metrics_across_folds=True,
            output_settings=OutputSettings(
                project_folder=self.tmp_folder_path),
        )

        self.test_metrics_and_aggregations()
Exemple #30
0
    def test_get_optimum_config_outer_folds(self):
        my_pipe_optimizer = Hyperpipe.Optimization(
            "grid_search", {}, [], "balanced_accuracy", None
        )

        outer_fold_list = list()
        for i in range(10):
            outer_fold = MDBOuterFold()
            outer_fold.best_config = MDBConfig()
            outer_fold.best_config.best_config_score = MDBInnerFold()
            outer_fold.best_config.best_config_score.validation = MDBScoreInformation()
            # again fold 5 wins
            if i == 5:
                outer_fold.best_config.best_config_score.validation.metrics = {
                    "balanced_accuracy": 0.99
                }
            else:
                outer_fold.best_config.best_config_score.validation.metrics = {
                    "balanced_accuracy": 0.5
                }
            outer_fold_list.append(outer_fold)

        best_config_outer_folds = my_pipe_optimizer.get_optimum_config_outer_folds(
            outer_fold_list
        )
        self.assertEqual(
            best_config_outer_folds.best_config_score.validation.metrics[
                "balanced_accuracy"
            ],
            0.99,
        )
        self.assertIs(best_config_outer_folds, outer_fold_list[5].best_config)