Exemple #1
0
def eld_another(U,p_min,p_max,d,brk):
    """eld -- economic load dispatching in electricity generation
    Parameters:
        - U: set of generators (units)
        - p_min[u]: minimum operating power for unit u
        - p_max[u]: maximum operating power for unit u
        - d: demand
        - brk[u][k]: (x,y) coordinates of breakpoint k, k=0,...,K for unit u
    Returns a model, ready to be solved.
    """
    model = Model("Economic load dispatching")

    # set objective based on piecewise linear approximation
    p,F,z = {},{},{}
    for u in U:
        abrk = [X for (X,Y) in brk[u]]
        bbrk = [Y for (X,Y) in brk[u]]
        p[u],F[u],z[u] = convex_comb_sos(model,abrk,bbrk)
        p[u].lb = p_min[u]
        p[u].ub = p_max[u]

    # demand satisfaction
    model.addCons(quicksum(p[u] for u in U) == d, "demand")

    # objective
    model.setObjective(quicksum(F[u] for u in U), "minimize")

    model.data = p
    return model
Exemple #2
0
def ssa(n, h, K, f, T):
    """ssa -- multi-stage (serial) safety stock allocation model
    Parameters:
        - n: number of stages
        - h[i]: inventory cost on stage i
        - K: number of linear segments
        - f: (non-linear) cost function
        - T[i]: production lead time on stage i
    Returns the model with the piecewise linear relation on added variables x, f, and z.
    """

    model = Model("safety stock allocation")

    # calculate endpoints for linear segments
    a, b = {}, {}
    for i in range(1, n + 1):
        a[i] = [k for k in range(K)]
        b[i] = [f(i, k) for k in range(K)]

    # x: net replenishment time for stage i
    # y: corresponding cost
    # s: piecewise linear segment of variable x
    x, y, s = {}, {}, {}
    L = {}  # service time of stage i
    for i in range(1, n + 1):
        x[i], y[i], s[i] = convex_comb_sos(model, a[i], b[i])
        if i == 1:
            L[i] = model.addVar(ub=0, vtype="C", name="L[%s]" % i)
        else:
            L[i] = model.addVar(vtype="C", name="L[%s]" % i)
    L[n + 1] = model.addVar(ub=0, vtype="C", name="L[%s]" % (n + 1))
    model.update()

    for i in range(1, n + 1):
        # net replenishment time for each stage i
        model.addConstr(x[i] + L[i] == T[i] + L[i + 1])

    model.setObjective(quicksum(h[i] * y[i] for i in range(1, n + 1)),
                       GRB.MINIMIZE)

    model.update()
    model.__data = x, s, L
    return model
Exemple #3
0
def ssa(n,h,K,f,T):
    """ssa -- multi-stage (serial) safety stock allocation model
    Parameters:
        - n: number of stages
        - h[i]: inventory cost on stage i
        - K: number of linear segments
        - f: (non-linear) cost function
        - T[i]: production lead time on stage i
    Returns the model with the piecewise linear relation on added variables x, f, and z.
    """

    model = Model("safety stock allocation")

    # calculate endpoints for linear segments
    a,b = {},{}
    for i in range(1,n+1):
        a[i] = [k for k in range(K)]
        b[i] = [f(i,k) for k in range(K)]

    # x: net replenishment time for stage i
    # y: corresponding cost
    # s: piecewise linear segment of variable x
    x,y,s = {},{},{}
    L = {} # service time of stage i
    for i in range(1,n+1):
        x[i],y[i],s[i] = convex_comb_sos(model,a[i],b[i])
        if i == 1:
            L[i] = model.addVar(ub=0, vtype="C", name="L[%s]"%i)
        else:
            L[i] = model.addVar(vtype="C", name="L[%s]"%i)
    L[n+1] = model.addVar(ub=0, vtype="C", name="L[%s]"%(n+1))

    for i in range(1,n+1):
        # net replenishment time for each stage i
        model.addCons(x[i] + L[i] == T[i] + L[i+1])

    model.setObjective(quicksum(h[i]*y[i] for i in range(1,n+1)), "minimize")

    model.data = x,s,L
    return model