Exemple #1
0
def test_sizemag_plot():
    """Check a size-magnitude plot.
    """
    if __name__ == '__main__':
        logger = piff.config.setup_logger(2)
    else:
        logger = piff.config.setup_logger(
            log_file='output/test_sizemag_plot.log')

    config = piff.config.read_config('sizemag.yaml')
    file_name = os.path.join('output',
                             config['output']['stats'][0]['file_name'])

    # Some modifications to speed it up a bit.
    config['select'] = {
        'type': 'Properties',
        'where': '(CLASS_STAR > 0.9) & (MAG_AUTO < 13)',
        'hsm_size_reject': 4,
        'min_snr': 50,
    }
    config['psf']['interp'] = {'type': 'Mean'}
    config['psf']['outliers']['nsigma'] = 10
    del config['output']['stats'][1:]

    # Run via piffify
    piff.piffify(config, logger)
    assert os.path.isfile(file_name)

    # repeat with plotify function
    os.remove(file_name)
    piff.plotify(config, logger)
    assert os.path.isfile(file_name)
Exemple #2
0
def test_twodstats_config():
    """Test running stats through a config file.
    """
    if __name__ == '__main__':
        logger = piff.config.setup_logger(verbose=2)
    else:
        logger = piff.config.setup_logger(
            log_file='output/test_twodstats_config.log')

    image_file = os.path.join('output', 'test_stats_image.fits')
    cat_file = os.path.join('output', 'test_stats_cat.fits')
    psf_file = os.path.join('output', 'test_twodstats.fits')
    twodhist_file = os.path.join('output', 'test_twodhiststats.pdf')
    twodhist_std_file = os.path.join('output', 'test_twodhiststats_std.pdf')
    config = {
        'input': {
            'image_file_name': image_file,
            'cat_file_name': cat_file,
            'stamp_size': 48
        },
        'psf': {
            'model': {
                'type': 'Gaussian',
                'fastfit': True,
                'include_pixel': False
            },
            'interp': {
                'type': 'Mean'
            },
        },
        'output': {
            'file_name':
            psf_file,
            'stats': [
                {
                    'type': 'TwoDHist',
                    'file_name': twodhist_file,
                    'nbins_u': 3,
                    'nbins_v': 3,
                },
                {
                    'type': 'TwoDHist',
                    'file_name': twodhist_std_file,
                    'reducing_function': 'np.std',
                    'nbins_u': 3,
                    'nbins_v': 3,
                },
            ]
        }
    }
    piff.piffify(config, logger)
    assert os.path.isfile(twodhist_file)
    assert os.path.isfile(twodhist_std_file)

    # repeat with plotify function
    os.remove(twodhist_file)
    os.remove(twodhist_std_file)
    piff.plotify(config, logger)
    assert os.path.isfile(twodhist_file)
    assert os.path.isfile(twodhist_std_file)
Exemple #3
0
def test_shapestats_config():
    """Test running stats through a config file.
    """
    if __name__ == '__main__':
        logger = piff.config.setup_logger(verbose=2)
    else:
        logger = piff.config.setup_logger(log_file='output/test_shapestats_config.log')

    image_file = os.path.join('output','test_stats_image.fits')
    cat_file = os.path.join('output','test_stats_cat.fits')
    psf_file = os.path.join('output','test_shapestats.fits')
    shape_file = os.path.join('output','test_shapestats.pdf')
    config = {
        'input' : {
            'image_file_name' : image_file,
            'cat_file_name' : cat_file,
            'stamp_size' : 48
        },
        'psf' : {
            'model' : { 'type' : 'Gaussian',
                        'fastfit': True,
                        'include_pixel': False },
            'interp' : { 'type' : 'Mean' },
        },
        'output' : {
            'file_name' : psf_file,
            'stats' : [
                {
                    'type': 'ShapeHistograms',
                    'file_name': shape_file
                },
            ]
        },
    }
    piff.piffify(config, logger)
    assert os.path.isfile(shape_file)

    # repeat with plotify function
    os.remove(shape_file)
    piff.plotify(config, logger)
    assert os.path.isfile(shape_file)

    # Test ShapeHistogramStats directly
    psf = piff.read(psf_file)
    shapeStats = piff.ShapeHistogramsStats()
    orig_stars, wcs, pointing = piff.Input.process(config['input'], logger)
    shapeStats.compute(psf, orig_stars)

    # test their characteristics
    sigma = 1.3  # (copied from setup())
    g1 = 0.23
    g2 = -0.17
    np.testing.assert_array_almost_equal(sigma, shapeStats.T, decimal=4)
    np.testing.assert_array_almost_equal(sigma, shapeStats.T_model, decimal=3)
    np.testing.assert_array_almost_equal(g1, shapeStats.g1, decimal=4)
    np.testing.assert_array_almost_equal(g1, shapeStats.g1_model, decimal=3)
    np.testing.assert_array_almost_equal(g2, shapeStats.g2, decimal=4)
    np.testing.assert_array_almost_equal(g2, shapeStats.g2_model, decimal=3)
Exemple #4
0
def test_invalid_config():
    # Test a few invalid uses of the config parsing.
    if __name__ == '__main__':
        logger = piff.config.setup_logger(verbose=2)
    else:
        logger = piff.config.setup_logger(log_file='output/test_invalid_config.log')
    image_file = os.path.join('output','simple_image.fits')
    cat_file = os.path.join('output','simple_cat.fits')
    psf_file = os.path.join('output','simple_psf.fits')
    config = {
        'input' : {
            'image_file_name' : image_file,
            'cat_file_name' : cat_file,
            'flag_col' : 'flag',
            'use_flag' : 1,
            'skip_flag' : 4,
        },
        'psf' : {
            'model' : { 'type' : 'Gaussian',
                        'fastfit': True,
                        'include_pixel': False},
            'interp' : { 'type' : 'Mean' },
            'max_iter' : 10,
            'chisq_thresh' : 0.2,
        },
        'output' : { 'file_name' : psf_file },
    }
    # Invalid variable specification
    with np.testing.assert_raises(ValueError):
        piff.parse_variables(config, ['verbose:0'], logger=logger)
    # process needs both input and psf
    with np.testing.assert_raises(ValueError):
        piff.process(config={'input':config['input']}, logger=logger)
    with np.testing.assert_raises(ValueError):
        piff.process(config={'psf':config['psf']}, logger=logger)
    # piffify also needs output
    with np.testing.assert_raises(ValueError):
        piff.piffify(config={'input':config['input']}, logger=logger)
    with np.testing.assert_raises(ValueError):
        piff.piffify(config={'psf':config['psf']}, logger=logger)
    with np.testing.assert_raises(ValueError):
        piff.piffify(config={'input':config['input'], 'psf':config['psf']}, logger=logger)
    # plotify doesn't need psf, but needs a 'file_name' in output
    with np.testing.assert_raises(ValueError):
        piff.plotify(config={'input':config['input']}, logger=logger)
    with np.testing.assert_raises(ValueError):
        piff.plotify(config={'input':config['input'], 'output':{}}, logger=logger)

    # Error if missing either model or interp
    config2 = copy.deepcopy(config)
    del config2['psf']['model']
    with np.testing.assert_raises(ValueError):
        piff.piffify(config2, logger)
    config2['psf']['model'] = config['psf']['model']
    del config2['psf']['interp']
    with np.testing.assert_raises(ValueError):
        piff.piffify(config2, logger)
Exemple #5
0
def test_twodstats_config():
    """Test running stats through a config file.
    """
    if __name__ == '__main__':
        logger = piff.config.setup_logger(verbose=2)
    else:
        logger = piff.config.setup_logger(log_file='output/test_twodstats_config.log')

    image_file = os.path.join('output','test_stats_image.fits')
    cat_file = os.path.join('output','test_stats_cat.fits')
    psf_file = os.path.join('output','test_twodstats.fits')
    twodhist_file = os.path.join('output','test_twodhiststats.pdf')
    twodhist_std_file = os.path.join('output','test_twodhiststats_std.pdf')
    config = {
        'input' : {
            'image_file_name' : image_file,
            'cat_file_name' : cat_file,
            'stamp_size' : 48
        },
        'psf' : {
            'model' : { 'type' : 'Gaussian',
                        'fastfit': True,
                        'include_pixel': False },
            'interp' : { 'type' : 'Mean' },
        },
        'output' : {
            'file_name' : psf_file,
            'stats' : [
                {
                    'type': 'TwoDHist',
                    'file_name': twodhist_file,
                    'number_bins_u': 3,
                    'number_bins_v': 3,
                },
                {
                    'type': 'TwoDHist',
                    'file_name': twodhist_std_file,
                    'reducing_function': 'np.std',
                    'number_bins_u': 3,
                    'number_bins_v': 3,
                },
            ]
        }
    }
    piff.piffify(config, logger)
    assert os.path.isfile(twodhist_file)
    assert os.path.isfile(twodhist_std_file)

    # repeat with plotify function
    os.remove(twodhist_file)
    os.remove(twodhist_std_file)
    piff.plotify(config, logger)
    assert os.path.isfile(twodhist_file)
    assert os.path.isfile(twodhist_std_file)
Exemple #6
0
def test_starstats_config():
    """Test running stats through a config file.
    """
    if __name__ == '__main__':
        logger = piff.config.setup_logger(verbose=2)
    else:
        logger = piff.config.setup_logger(log_file='output/test_starstats_config.log')

    image_file = os.path.join('output','test_stats_image.fits')
    cat_file = os.path.join('output','test_stats_cat.fits')
    psf_file = os.path.join('output','test_starstats.fits')
    star_file = os.path.join('output', 'test_starstats.pdf')
    star_noadjust_file = os.path.join('output', 'test_starstats_noadjust.pdf')
    config = {
        'input' : {
            'image_file_name' : image_file,
            'cat_file_name' : cat_file,
            'stamp_size' : 48
        },
        'psf' : {
            'model' : { 'type' : 'Gaussian',
                        'fastfit': True,
                        'include_pixel': False },
            'interp' : { 'type' : 'Mean' },
        },
        'output' : {
            'file_name' : psf_file,
            'stats' : [
                {
                    'type': 'Star',
                    'file_name': star_file,
                    'number_plot': 5,
                    'adjust_stars': True,
                }
            ]
        }
    }
    piff.piffify(config, logger)
    assert os.path.isfile(star_file)

    # repeat with plotify function
    os.remove(star_file)
    piff.plotify(config, logger)
    assert os.path.isfile(star_file)

    # check default number_plot
    psf = piff.read(psf_file)
    starStats = piff.StarStats()
    orig_stars, wcs, pointing = piff.Input.process(config['input'], logger)
    starStats.compute(psf, orig_stars)
    assert starStats.number_plot == len(starStats.stars)
    assert starStats.number_plot == len(starStats.models)
    assert starStats.number_plot == len(starStats.indices)
    np.testing.assert_array_equal(starStats.stars[2].image.array,
                                  orig_stars[starStats.indices[2]].image.array)

    # check number_plot = 6
    starStats = piff.StarStats(number_plot=6)
    starStats.compute(psf, orig_stars)
    assert len(starStats.stars) == 6

    # check number_plot >> len(stars)
    starStats = piff.StarStats(number_plot=1000000)
    starStats.compute(psf, orig_stars)
    assert len(starStats.stars) == len(orig_stars)
    # if use all stars, no randomness
    np.testing.assert_array_equal(starStats.stars[3].image.array, orig_stars[3].image.array)
    np.testing.assert_array_equal(starStats.indices, np.arange(len(orig_stars)))

    # check number_plot = 0
    starStats = piff.StarStats(number_plot=0)
    starStats.compute(psf, orig_stars)
    assert len(starStats.stars) == len(orig_stars)
    # if use all stars, no randomness
    np.testing.assert_array_equal(starStats.stars[3].image.array, orig_stars[3].image.array)
    np.testing.assert_array_equal(starStats.indices, np.arange(len(orig_stars)))

    # rerun with adjust stars and see if it did the right thing
    # first with starstats == False
    starStats = piff.StarStats(number_plot=0, adjust_stars=False)
    starStats.compute(psf, orig_stars, logger=logger)
    fluxs_noadjust = np.array([s.fit.flux for s in starStats.stars])
    ds_noadjust = np.array([s.fit.center for s in starStats.stars])
    # check that fluxes 1
    np.testing.assert_array_equal(fluxs_noadjust, 1)
    # check that ds are 0
    np.testing.assert_array_equal(ds_noadjust, 0)

    # now with starstats == True
    starStats = piff.StarStats(number_plot=0, adjust_stars=True)
    starStats.compute(psf, orig_stars, logger=logger)
    fluxs_adjust = np.array([s.fit.flux for s in starStats.stars])
    ds_adjust = np.array([s.fit.center for s in starStats.stars])
    # copy the right values from setup()
    dx = 0.31
    dy = -0.32
    flux = 123.45
    # compare fluxes
    np.testing.assert_allclose(fluxs_adjust, flux, rtol=1e-4)
    # compare dx and dy, keeping in mind that ds_adjust is dx/y * 0.26 (scale)
    dx_adjust = ds_adjust[:, 0] / 0.26
    dy_adjust = ds_adjust[:, 1] / 0.26
    np.testing.assert_allclose(dx_adjust, dx, rtol=1e-4)
    np.testing.assert_allclose(dy_adjust, dy, rtol=1e-4)

    # do once with adjust_stars = False to graphically demonstrate
    config['output']['stats'][0]['file_name'] = star_noadjust_file
    config['output']['stats'][0]['adjust_stars'] = False
    piff.plotify(config, logger)
    assert os.path.isfile(star_noadjust_file)
Exemple #7
0
def test_rhostats_config():
    """Test running stats through a config file.
    """
    if __name__ == '__main__':
        logger = piff.config.setup_logger(verbose=2)
    else:
        logger = piff.config.setup_logger(log_file='output/test_rhostats_config.log')

    image_file = os.path.join('output','test_stats_image.fits')
    cat_file = os.path.join('output','test_stats_cat.fits')
    psf_file = os.path.join('output','test_rhostats.fits')
    rho_file = os.path.join('output','test_rhostats.pdf')
    config = {
        'input' : {
            'image_file_name' : image_file,
            'cat_file_name' : cat_file,
            'stamp_size' : 48
        },
        'psf' : {
            'model' : { 'type' : 'Gaussian',
                        'fastfit': True,
                        'include_pixel': False },
            'interp' : { 'type' : 'Mean' },
        },
        'output' : {
            'file_name' : psf_file,
            'stats' : {  # Note: stats doesn't have to be a list.
                'type': 'Rho',
                'file_name': rho_file
            }
        },
    }
    piff.piffify(config, logger)
    assert os.path.isfile(rho_file)

    # repeat with plotify function
    os.remove(rho_file)
    piff.plotify(config, logger)
    assert os.path.isfile(rho_file)

    # Test rho statistics directly.
    min_sep = 1
    max_sep = 100
    bin_size = 0.1
    psf = piff.read(psf_file)
    orig_stars, wcs, pointing = piff.Input.process(config['input'], logger)
    stats = piff.RhoStats(min_sep=min_sep, max_sep=max_sep, bin_size=bin_size)
    stats.compute(psf, orig_stars)

    rhos = [stats.rho1, stats.rho2, stats.rho3, stats.rho4, stats.rho5]
    for rho in rhos:
        # Test the range of separations
        radius = np.exp(rho.logr)
        np.testing.assert_array_less(radius, max_sep)
        np.testing.assert_array_less(min_sep, radius)
        # bin_size is reduced slightly to get integer number of bins
        assert rho.bin_size < bin_size
        assert np.isclose(rho.bin_size, bin_size, rtol=0.1)
        np.testing.assert_array_almost_equal(np.diff(rho.logr), rho.bin_size, decimal=5)

        # Test that the max absolute value of each rho isn't crazy
        np.testing.assert_array_less(np.abs(rho.xip), 1)

        # # Check that each rho isn't precisely zero. This means the sum of abs > 0
        np.testing.assert_array_less(0, np.sum(np.abs(rho.xip)))

    # Test using the piffify executable
    os.remove(rho_file)
    config['verbose'] = 0
    with open('rho.yaml','w') as f:
        f.write(yaml.dump(config, default_flow_style=False))
    piffify_exe = get_script_name('piffify')
    p = subprocess.Popen( [piffify_exe, 'rho.yaml'] )
    p.communicate()
    assert os.path.isfile(rho_file)

    # Test using the plotify executable
    os.remove(rho_file)
    plotify_exe = get_script_name('plotify')
    p = subprocess.Popen( [plotify_exe, 'rho.yaml'] )
    p.communicate()
    assert os.path.isfile(rho_file)

    # test running plotify with dir in config, with no logger, and with a modules specification.
    # (all to improve test coverage)
    config['output']['dir'] = '.'
    config['modules'] = [ 'custom_wcs' ]
    os.remove(rho_file)
    piff.plotify(config)
    assert os.path.isfile(rho_file)
Exemple #8
0
def test_shapestats_config():
    """Test running stats through a config file.
    """
    if __name__ == '__main__':
        logger = piff.config.setup_logger(verbose=2)
    else:
        logger = piff.config.setup_logger(log_file='output/test_shapestats_config.log')

    image_file = os.path.join('output','test_stats_image.fits')
    cat_file = os.path.join('output','test_stats_cat.fits')
    psf_file = os.path.join('output','test_shapestats.fits')
    shape_file = os.path.join('output','test_shapestats.pdf')
    config = {
        'input' : {
            'image_file_name' : image_file,
            'cat_file_name' : cat_file,
            'stamp_size' : 48
        },
        'psf' : {
            'model' : { 'type' : 'Gaussian',
                        'fastfit': True,
                        'include_pixel': False },
            'interp' : { 'type' : 'Mean' },
        },
        'output' : {
            'file_name' : psf_file,
            'stats' : [
                {
                    'type': 'ShapeHist',
                    'file_name': shape_file
                },
            ]
        },
    }
    piff.piffify(config, logger)
    assert os.path.isfile(shape_file)

    # repeat with plotify function
    os.remove(shape_file)
    piff.plotify(config, logger)
    assert os.path.isfile(shape_file)

    # Test ShapeHistStats directly
    psf = piff.read(psf_file)
    shapeStats = piff.ShapeHistStats(nbins=5)  # default is sqrt(nstars)
    orig_stars, wcs, pointing = piff.Input.process(config['input'], logger)
    with np.testing.assert_raises(RuntimeError):
        shapeStats.write()  # Cannot write before compute
    shapeStats.compute(psf, orig_stars)
    shapeStats.plot(histtype='bar', log=True)  # can supply additional args for matplotlib

    # test their characteristics
    sigma = 1.3  # (copied from setup())
    T = 2*sigma**2
    g1 = 0.23
    g2 = -0.17
    np.testing.assert_array_almost_equal(T, shapeStats.T, decimal=4)
    np.testing.assert_array_almost_equal(T, shapeStats.T_model, decimal=3)
    np.testing.assert_array_almost_equal(g1, shapeStats.g1, decimal=4)
    np.testing.assert_array_almost_equal(g1, shapeStats.g1_model, decimal=3)
    np.testing.assert_array_almost_equal(g2, shapeStats.g2, decimal=4)
    np.testing.assert_array_almost_equal(g2, shapeStats.g2_model, decimal=3)