def generate_scatter_bokeh(data_dir=op.join('generated', 'data'), output_dir=op.join('generated', 'plots')): """Various scatter plots""" for atlas, measures in prefixes.items(): # Generate area vs. thickness plots if atlas.lower() == 'destrieux': continue # Thickness vs. area do_scatter(atlas=atlas, prefixes=[op.commonprefix(measures.values())], x_key='%s:AI:mean' % measures['area'], y_key='%s:AI:mean' % measures['thickness'], title="Area vs. thickness", data_dir=data_dir, output_dir=output_dir, output_format='bokeh') for measure, prefix in measures.items(): # Generate scatter plot for given dataset / data point do_scatter(atlas=atlas, prefixes=[prefix], x_key='AI:mean', y_key='AI:std', size_key='LH_PLUS_RH:mean', data_dir=data_dir, output_dir=output_dir, output_format='bokeh')
def generate_similarity_bokeh(data_dir=op.join('generated', 'data'), output_dir=op.join('generated', 'plots', 'similarity')): """Asymmetry partial correlation matrix""" for atlas, measures in prefixes.items(): if atlas == 'destrieux': # skip destrieux continue for measure, prefix in measures.items(): # Generate similarity matrix for given dataset / data point do_similarity(atlas=atlas, prefixes=[prefix], metric='partial-correlation', measures=['Asymmetry Index'], data_dir=data_dir, output_dir=output_dir, output_format='bokeh')
def generate_multivariate(data_dir=op.join('generated', 'data'), output_dir=op.join('generated', 'data')): """PCA overlay for roygbiv""" from ping.ping.data import prefixes from ping.scripts.multivariate import do_multivariate for atlas, measures in prefixes.items(): if atlas == 'destrieux': # skip destrieux continue for measure, prefix in measures.items(): do_multivariate(prefixes=[prefix], atlas=atlas, data_dir=data_dir, output_dir=op.join(output_dir, 'fsaverage', atlas), output_format='json', verbose=0, pc_thresh=0.05)
def generate_similarity_json(data_dir=op.join('generated', 'data'), output_dir=op.join('generated', 'data')): """Asymmetry partial correlation data as json overlay for roygbiv""" from ping.ping.data import prefixes from ping.scripts.similarity import do_similarity for atlas, measures in prefixes.items(): if atlas == 'destrieux': # skip destrieux continue for measure, prefix in measures.items(): do_similarity(atlas=atlas, prefixes=[prefix], metric='partial-correlation', measures=['Asymmetry Index'], data_dir=data_dir, output_dir=op.join(output_dir, 'fsaverage', atlas), output_format='json')
def generate_regressions(data_dir=op.join('generated', 'data'), output_dir=op.join('generated', 'plots', 'regression')): """Regression between age and value, grouped by gender/handedness""" from ping.ping.data import prefixes from ping.scripts.grouping import do_grouping for atlas, measures in prefixes.items(): if atlas == 'destrieux': # skip destrieux continue for measure, prefix in measures.items(): for grouping_key in ['Gender', 'FDH_23_Handedness_Prtcpnt']: do_grouping(prefixes=[prefix], grouping_keys=[grouping_key], xaxis_key='Age_At_IMGExam', plots='regressions', atlas='desikan', data_dir=data_dir, output_dir=output_dir, output_type='matplotlib')