Exemple #1
0
    def createProblem(self, x0, comGoTo, timeStep, numKnots):
        # Compute the current foot positions
        q0 = a2m(x0[:self.rmodel.nq])
        pinocchio.forwardKinematics(self.rmodel, self.rdata, q0)
        pinocchio.updateFramePlacements(self.rmodel, self.rdata)
        com0 = m2a(pinocchio.centerOfMass(self.rmodel, self.rdata, q0))

        # Defining the action models along the time instances
        comModels = []

        # Creating the action model for the CoM task
        comForwardModels = [
            self.createModels(
                timeStep,
                [self.lfFootId, self.rfFootId, self.lhFootId, self.rhFootId],
            ) for k in range(numKnots)
        ]
        comForwardTermModel = self.createModels(
            timeStep,
            [self.lfFootId, self.rfFootId, self.lhFootId, self.rhFootId],
            com0 + [comGoTo, 0., 0.])
        comForwardTermModel.differential.costs['comTrack'].weight = 1e6

        # Adding the CoM tasks
        comModels += comForwardModels + [comForwardTermModel]

        # Defining the shooting problem
        problem = ShootingProblem(x0, comModels, comModels[-1])
        return problem
Exemple #2
0
    def calcDiff(self, data, x, u=None, recalc=True):
        if u is None:
            u = self.unone
        if recalc:
            xout, cost = self.calc(data, x, u)
        nq, nv = self.nq, self.nv
        q = a2m(x[:nq])
        v = a2m(x[-nv:])
        tauq = a2m(data.actuation.a)
        pinocchio.computeABADerivatives(self.pinocchio, data.pinocchio, q, v, tauq)
        da_dq = data.pinocchio.ddq_dq
        da_dv = data.pinocchio.ddq_dv
        da_dact = data.pinocchio.Minv

        dact_dx = data.actuation.Ax
        dact_du = data.actuation.Au

        data.Fx[:, :nv] = da_dq
        data.Fx[:, nv:] = da_dv
        data.Fx += np.dot(da_dact, dact_dx)
        data.Fu[:, :] = np.dot(da_dact, dact_du)

        pinocchio.computeJointJacobians(self.pinocchio, data.pinocchio, q)
        pinocchio.updateFramePlacements(self.pinocchio, data.pinocchio)
        self.costs.calcDiff(data.costs, x, u, recalc=False)

        return data.xout, data.cost
Exemple #3
0
 def cost(self, x):
     q = a2m(x)
     pinocchio.forwardKinematics(self.rmodel, self.rdata, q)
     pinocchio.updateFramePlacements(self.rmodel, self.rdata)
     M = self.rdata.oMf[self.idEff]
     self.residuals = m2a(pinocchio.log(M.inverse() * self.ref).vector)
     return sum(self.residuals**2)
 def calcDiff(self, data, x, u=None, recalc=True):
     if u is None:
         u = self.unone
     if recalc:
         xout, cost = self.calc(data, x, u)
     nq, nv = self.nq, self.nv
     q = a2m(x[:nq])
     v = a2m(x[-nv:])
     tauq = a2m(u)
     a = a2m(data.xout)
     # --- Dynamics
     if self.forceAba:
         pinocchio.computeABADerivatives(self.pinocchio, data.pinocchio, q,
                                         v, tauq)
         data.Fx[:, :nv] = data.pinocchio.ddq_dq
         data.Fx[:, nv:] = data.pinocchio.ddq_dv
         data.Fu[:, :] = data.pinocchio.Minv
     else:
         pinocchio.computeRNEADerivatives(self.pinocchio, data.pinocchio, q,
                                          v, a)
         data.Fx[:, :nv] = -np.dot(data.Minv, data.pinocchio.dtau_dq)
         data.Fx[:, nv:] = -np.dot(data.Minv, data.pinocchio.dtau_dv)
         data.Fu[:, :] = data.Minv
     # --- Cost
     pinocchio.computeJointJacobians(self.pinocchio, data.pinocchio, q)
     pinocchio.updateFramePlacements(self.pinocchio, data.pinocchio)
     self.costs.calcDiff(data.costs, x, u, recalc=False)
     return data.xout, data.cost
Exemple #5
0
    def calc(self, data, x, u=None):
        if u is None:
            u = self.unone
        nq, nv = self.nq, self.nv
        q = a2m(x[:nq])
        v = a2m(x[-nv:])

        pinocchio.computeAllTerms(self.pinocchio, data.pinocchio, q, v)
        pinocchio.updateFramePlacements(self.pinocchio, data.pinocchio)

        data.tauq[:] = self.actuation.calc(data.actuation, x, u)
        self.contact.calc(data.contact, x)

        data.K[:nv, :nv] = data.pinocchio.M
        if hasattr(self.pinocchio, 'armature'):
            data.K[range(nv), range(nv)] += self.pinocchio.armature.flat
        data.K[nv:, :nv] = data.contact.J
        data.K.T[nv:, :nv] = data.contact.J
        data.Kinv = np.linalg.inv(data.K)

        data.r[:nv] = data.tauq - m2a(data.pinocchio.nle)
        data.r[nv:] = -data.contact.a0
        data.af[:] = np.dot(data.Kinv, data.r)
        data.f[:] *= -1.

        # Convert force array to vector of spatial forces.
        self.contact.setForces(data.contact, data.f)

        data.cost = self.costs.calc(data.costs, x, u)
        return data.xout, data.cost
Exemple #6
0
def main():
    '''
        Main procedure
        1 ) Build the model from an URDF file
        2 ) compute forwardKinematics
        3 ) compute forwardKinematics of the frames
        4 ) explore data
    '''
    model_file = Path(__file__).absolute().parents[1].joinpath(
        'urdf', 'twolinks.urdf')
    model = buildModelFromUrdf(str(model_file))
    # Create data required by the algorithms
    data = model.createData()
    # Sample a random configuration
    numpy_vector_joint_pos = randomConfiguration(model)
    # THIS FUNCTION CALLS THE FORWARD KINEMATICS
    computeJointJacobians(model, data, numpy_vector_joint_pos)
    joint_number = model.njoints
    for i in range(joint_number):
        joint = model.joints[i]
        joint_placement = data.oMi[i]
        joint_jacobian = getJointJacobian(model, data, i, ReferenceFrame.WORLD)

    # CAUTION updateFramePlacements must be called to update frame's positions
    # Remark: in pinocchio frames, joints and bodies are different things
    updateFramePlacements(model, data)
    # Print out the placement of each joint of the kinematic tree

    frame_number = model.nframes
    for i in range(frame_number):
        frame = model.frames[i]
        frame_placement = data.oMf[i]
        frame_jacobian = getFrameJacobian(model, data, i, ReferenceFrame.WORLD)
Exemple #7
0
 def constraint(self, x):
     q = a2m(x)
     pinocchio.forwardKinematics(self.rmodel, self.rdata, q)
     pinocchio.updateFramePlacements(self.rmodel, self.rdata)
     M = self.rdata.oMf[self.idEff]
     self.eq = m2a(M.translation) - self.refEff
     return self.eq.flat
 def constraint(self, x):
     q = a2m(x)
     pinocchio.forwardKinematics(self.rmodel, self.rdata, q)
     pinocchio.updateFramePlacements(self.rmodel, self.rdata)
     refMeff = self.refEff.inverse() * self.rdata.oMf[self.idEff]
     self.eq = m2a(pinocchio.log(refMeff).vector)
     return self.eq.tolist()
Exemple #9
0
    def compute_forces(self, compute_data=True):
        '''Compute the contact forces from q, v and elastic model'''
        if compute_data:
            se3.forwardKinematics(self.model, self.data, self.q, self.v,
                                  zero(self.model.nv))
            se3.computeJointJacobians(self.model, self.data)
            se3.updateFramePlacements(self.model, self.data)

        # check collisions only if unilateral contacts are enables
        # or if the contact is not active yet
        for c in self.contacts:
            if (self.unilateral_contacts or not c.active):
                c.check_collision()

        contact_changed = False
        if (self.nc != np.sum([c.active for c in self.contacts])):
            contact_changed = True
            print("%.3f Number of active contacts changed from %d to %d." %
                  (self.t, self.nc, np.sum([c.active for c in self.contacts])))
            self.resize_contacts()

        i = 0
        for c in self.contacts:
            if (c.active):
                self.f[3 * i:3 * i + 3] = c.compute_force(
                    self.unilateral_contacts)
                self.p[3 * i:3 * i + 3] = c.p
                self.dp[3 * i:3 * i + 3] = c.v
                self.p0[3 * i:3 * i + 3] = c.p0
                self.dp0[3 * i:3 * i + 3] = c.dp0
                i += 1
#                if(contact_changed):
#                print(i, c.frame_name, 'p', c.p.T, 'p0', c.p0.T, 'f', c.f.T)

        return self.f
Exemple #10
0
 def constraint_rightfoot(self, x, nc=0):
     q, tauq, fr, fl = self.x2qf(x)
     pinocchio.forwardKinematics(self.rmodel, self.rdata, q)
     pinocchio.updateFramePlacements(self.rmodel, self.rdata)
     refMr = self.refR.inverse() * self.rdata.oMf[self.idR]
     self.eq[nc:nc + 6] = m2a(pinocchio.log(refMr).vector)
     return self.eq[nc:nc + 6].tolist()
Exemple #11
0
    def init(self, q0, v0=None, reset_contact_positions=False):
        self.q = q0.copy()
        if (v0 is None): self.v = zero(self.NV)
        else: self.v = v0.copy()
        self.dv = zero(self.NV)

        # reset contact position
        if (reset_contact_positions):
            se3.forwardKinematics(self.robot.model, self.robot.data, self.q)
            se3.updateFramePlacements(self.robot.model, self.robot.data)
            self.Mrf0 = self.robot.data.oMf[self.RF].copy(
            )  # Initial (i.e. 0-load) position of the R spring.
            self.Mlf0 = self.robot.data.oMf[self.LF].copy(
            )  # Initial (i.e. 0-load) position of the L spring.

        self.compute_f_df(self.q, self.v, compute_data=True)
        self.df = zero(4)
        self.com_p, self.com_v, self.com_a, self.com_j = self.robot.get_com_and_derivatives(
            self.q, self.v, self.f, self.df)
        self.am, self.dam, self.ddam = self.robot.get_angular_momentum_and_derivatives(
            self.q, self.v, self.f, self.df, self.Krf[0, 0], self.Krf[1, 1])
        self.com_s = zero(2)
        self.acc_lf = zero(3)
        self.acc_rf = zero(3)
        self.ddf = zero(4)
 def computeJacobian(self, q):
     pin.forwardKinematics(self.rmodel, self.rdata, q)
     pin.updateFramePlacements(self.rmodel, self.rdata)
     pin.computeJointJacobians(self.rmodel, self.rdata, q)
     J = pin.getFrameJacobian(self.rmodel, self.rdata, self.ee_frame_id,
                              pin.ReferenceFrame.LOCAL_WORLD_ALIGNED)
     return J
Exemple #13
0
 def constraint_leftfoot(self, x, nc=0):
     q = self.vq2q(a2m(x))
     pinocchio.forwardKinematics(self.rmodel, self.rdata, q)
     pinocchio.updateFramePlacements(self.rmodel, self.rdata)
     refMl = self.refL.inverse() * self.rdata.oMf[self.idL]
     self.eq[nc:nc + 6] = m2a(pinocchio.log(refMl).vector)
     return self.eq[nc:nc + 6].tolist()
Exemple #14
0
def MvJtf(q, vnext, v, f):
    M = pinocchio.crba(rmodel, rdata, q)
    pinocchio.computeJointJacobians(rmodel, rdata, q)
    pinocchio.forwardKinematics(rmodel, rdata, q)
    pinocchio.updateFramePlacements(rmodel, rdata)
    J = pinocchio.getFrameJacobian(rmodel, rdata, CONTACTFRAME,
                                   pinocchio.ReferenceFrame.LOCAL)
    return M * (vnext - v) - J.T * f
Exemple #15
0
    def calcDiff(self, data, x, u=None, recalc=True):
        if u is None:
            u = self.unone
        if recalc:
            xout, cost = self.calc(data, x, u)
        nq, nv = self.nq, self.nv
        q = a2m(x[:nq])
        v = a2m(x[-nv:])
        a = a2m(data.a)
        fs = data.contact.forces

        pinocchio.computeRNEADerivatives(self.pinocchio, data.pinocchio, q, v, a, fs)
        pinocchio.updateFramePlacements(self.pinocchio, data.pinocchio)

        # [a;-f] = K^-1 [ tau - b, -gamma ]
        # [a';-f'] = -K^-1 [ K'a + b' ; J'a + gamma' ]  = -K^-1 [ rnea'(q,v,a,fs) ; acc'(q,v,a) ]

        # Derivative of the actuation model tau = tau(q,u)
        # dtau_dq and dtau_dv are the rnea derivatives rnea'
        did_dq = data.pinocchio.dtau_dq
        did_dv = data.pinocchio.dtau_dv

        # Derivative of the contact constraint
        # da0_dq and da0_dv are the acceleration derivatives acc'
        self.contact.calcDiff(data.contact, x, recalc=False)
        dacc_dq = data.contact.Aq
        dacc_dv = data.contact.Av

        data.Kinv = np.linalg.inv(data.K)

        # We separate the Kinv into the a and f rows, and the actuation and acceleration columns
        da_did = -data.Kinv[:nv, :nv]
        df_did = data.Kinv[nv:, :nv]
        da_dacc = -data.Kinv[:nv, nv:]
        df_dacc = data.Kinv[nv:, nv:]

        da_dq = np.dot(da_did, did_dq) + np.dot(da_dacc, dacc_dq)
        da_dv = np.dot(da_did, did_dv) + np.dot(da_dacc, dacc_dv)
        da_dtau = data.Kinv[:nv, :nv]  # Add this alias just to make the code clearer
        df_dtau = -data.Kinv[nv:, :nv]  # Add this alias just to make the code clearer

        # tau is a function of x and u (typically trivial in x), whose derivatives are Ax and Au
        dtau_dx = data.actuation.Ax
        dtau_du = data.actuation.Au

        data.Fx[:, :nv] = da_dq
        data.Fx[:, nv:] = da_dv
        data.Fx += np.dot(da_dtau, dtau_dx)
        data.Fu[:, :] = np.dot(da_dtau, dtau_du)

        data.df_dq[:, :] = np.dot(df_did, did_dq) + np.dot(df_dacc, dacc_dq)
        data.df_dv[:, :] = np.dot(df_did, did_dv) + np.dot(df_dacc, dacc_dv)
        data.df_dx += np.dot(df_dtau, dtau_dx)
        data.df_du[:, :] = np.dot(df_dtau, dtau_du)

        self.contact.setForcesDiff(data.contact, data.df_dx, data.df_du)
        self.costs.calcDiff(data.costs, x, u, recalc=False)
        return data.xout, data.cost
 def computeJacobian(self, q):
     pin.forwardKinematics(self.rmodel, self.rdata, q)
     pin.updateFramePlacements(self.rmodel, self.rdata)
     pin.computeJointJacobians(self.rmodel, self.rdata, q)
     J = pin.getFrameJacobian(self.rmodel, self.rdata, self.ee_frame_id,
                              pin.ReferenceFrame.LOCAL_WORLD_ALIGNED)
     #modify J to remove the term corresponding to the base frame orientation
     J = np.hstack([J[:, :3], np.zeros((6, 4)), J[:, 6:]])
     return J
def main():
    '''
        Main procedure
        1 ) Build the model from an URDF file
        2 ) compute forwardKinematics
        3 ) compute forwardKinematics of the frames
        4 ) explore data
    '''
    model_file = Path(__file__).absolute().parents[1].joinpath(
        'urdf', 'twolinks.urdf')
    model = buildModelFromUrdf(str(model_file))
    # Create data required by the algorithms
    data = model.createData()
    # Sample a random configuration
    numpy_vector_joint_pos = randomConfiguration(model)
    numpy_vector_joint_vel = np.random.rand(model.njoints - 1)
    # Perform the forward kinematics over the kinematic tree
    forwardKinematics(model, data, numpy_vector_joint_pos,
                      numpy_vector_joint_vel)
    computeJointJacobians(model, data, numpy_vector_joint_pos)

    joint_number = model.njoints
    for i in range(joint_number):
        joint = model.joints[i]
        joint_placement = data.oMi[i]
        joint_velocity = getVelocity(model, data, i,
                                     ReferenceFrame.LOCAL_WORLD_ALIGNED)

        joint_jacobian = getJointJacobian(model, data, i,
                                          ReferenceFrame.LOCAL_WORLD_ALIGNED)

        joint_linear_vel = joint_velocity.linear
        joint_angular_vel = joint_velocity.angular
        joint_6v_vel = joint_velocity.vector

        err = joint_6v_vel - joint_jacobian.dot(numpy_vector_joint_vel)
        assert np.linalg.norm(err, ord=np.inf) < 1.0e-10, err

    # CAUTION updateFramePlacements must be called to update frame's positions
    # Remark: in pinocchio frames, joints and bodies are different things
    updateFramePlacements(model, data)
    frame_number = model.nframes
    for i in range(frame_number):
        frame = model.frames[i]
        frame_placement = data.oMf[i]
        frame_velocity = getFrameVelocity(model, data, i,
                                          ReferenceFrame.LOCAL_WORLD_ALIGNED)

        frame_jacobian = getFrameJacobian(model, data, i,
                                          ReferenceFrame.LOCAL_WORLD_ALIGNED)

        frame_linear_vel = frame_velocity.linear
        frame_angular_vel = frame_velocity.angular
        frame_6v_vel = frame_velocity.vector

        err = frame_6v_vel - frame_jacobian.dot(numpy_vector_joint_vel)
        assert np.linalg.norm(err, ord=np.inf) < 1.0e-10, err
Exemple #18
0
    def createWalkingProblem(self, x0, stepLength, stepHeight, timeStep,
                             stepKnots, supportKnots):
        """ Create a shooting problem for a simple walking gait.

        :param x0: initial state
        :param stepLength: step length
        :param stepHeight: step height
        :param timeStep: step time for each knot
        :param stepKnots: number of knots for step phases
        :param supportKnots: number of knots for double support phases
        :return shooting problem
        """
        # Compute the current foot positions
        q0 = x0[:self.state.nq]
        pinocchio.forwardKinematics(self.rmodel, self.rdata, q0)
        pinocchio.updateFramePlacements(self.rmodel, self.rdata)
        rfPos0 = self.rdata.oMf[self.rfId].translation
        lfPos0 = self.rdata.oMf[self.lfId].translation
        comRef = (rfPos0 + lfPos0) / 2
        comRef[2] = np.asscalar(
            pinocchio.centerOfMass(self.rmodel, self.rdata, q0)[2])

        # Defining the action models along the time instances
        loco3dModel = []
        doubleSupport = [
            self.createSwingFootModel(timeStep, [self.rfId, self.lfId])
            for k in range(supportKnots)
        ]

        # Creating the action models for three steps
        if self.firstStep is True:
            rStep = self.createFootstepModels(comRef, [rfPos0],
                                              0.5 * stepLength, stepHeight,
                                              timeStep, stepKnots, [self.lfId],
                                              [self.rfId])
            self.firstStep = False
        else:
            rStep = self.createFootstepModels(comRef, [rfPos0], stepLength,
                                              stepHeight, timeStep, stepKnots,
                                              [self.lfId], [self.rfId])
        lStep = self.createFootstepModels(comRef, [lfPos0], stepLength,
                                          stepHeight, timeStep, stepKnots,
                                          [self.rfId], [self.lfId])

        # We defined the problem as:
        loco3dModel += doubleSupport + rStep
        loco3dModel += doubleSupport + lStep

        # Rescaling the terminal weights
        costs = loco3dModel[-1].differential.costs.costs.todict()
        for c in costs.values():
            c.weight *= timeStep

        problem = crocoddyl.ShootingProblem(x0, loco3dModel[:-1],
                                            loco3dModel[-1])
        return problem
Exemple #19
0
    def createJumpingProblem(self, x0, jumpHeight, jumpLength, timeStep, groundKnots, flyingKnots):
        q0 = x0[:self.rmodel.nq]
        pinocchio.forwardKinematics(self.rmodel, self.rdata, q0)
        pinocchio.updateFramePlacements(self.rmodel, self.rdata)
        rfFootPos0 = self.rdata.oMf[self.rfFootId].translation
        rhFootPos0 = self.rdata.oMf[self.rhFootId].translation
        lfFootPos0 = self.rdata.oMf[self.lfFootId].translation
        lhFootPos0 = self.rdata.oMf[self.lhFootId].translation
        df = jumpLength[2] - rfFootPos0[2]
        rfFootPos0[2] = 0.
        rhFootPos0[2] = 0.
        lfFootPos0[2] = 0.
        lhFootPos0[2] = 0.
        comRef = (rfFootPos0 + rhFootPos0 + lfFootPos0 + lhFootPos0) / 4
        comRef[2] = np.asscalar(pinocchio.centerOfMass(self.rmodel, self.rdata, q0)[2])

        loco3dModel = []
        takeOff = [
            self.createSwingFootModel(
                timeStep,
                [self.lfFootId, self.rfFootId, self.lhFootId, self.rhFootId],
            ) for k in range(groundKnots)
        ]
        flyingUpPhase = [
            self.createSwingFootModel(
                timeStep, [],
                np.array([jumpLength[0], jumpLength[1], jumpLength[2] + jumpHeight]) * (k + 1) / flyingKnots + comRef)
            for k in range(flyingKnots)
        ]
        flyingDownPhase = []
        for k in range(flyingKnots):
            flyingDownPhase += [self.createSwingFootModel(timeStep, [])]

        f0 = jumpLength
        footTask = [
            crocoddyl.FramePlacement(self.lfFootId, pinocchio.SE3(np.eye(3), lfFootPos0 + f0)),
            crocoddyl.FramePlacement(self.rfFootId, pinocchio.SE3(np.eye(3), rfFootPos0 + f0)),
            crocoddyl.FramePlacement(self.lhFootId, pinocchio.SE3(np.eye(3), lhFootPos0 + f0)),
            crocoddyl.FramePlacement(self.rhFootId, pinocchio.SE3(np.eye(3), rhFootPos0 + f0))
        ]
        landingPhase = [
            self.createFootSwitchModel([self.lfFootId, self.rfFootId, self.lhFootId, self.rhFootId], footTask, False)
        ]
        f0[2] = df
        landed = [
            self.createSwingFootModel(timeStep, [self.lfFootId, self.rfFootId, self.lhFootId, self.rhFootId],
                                      comTask=comRef + f0) for k in range(groundKnots)
        ]
        loco3dModel += takeOff
        loco3dModel += flyingUpPhase
        loco3dModel += flyingDownPhase
        loco3dModel += landingPhase
        loco3dModel += landed

        problem = crocoddyl.ShootingProblem(x0, loco3dModel, loco3dModel[-1])
        return problem
Exemple #20
0
 def display(robot, q):
     robot.realdisplay(q)
     pio.updateFramePlacements(robot.model, robot.viz.data)
     robot.viewer.gui.applyConfiguration(
         'world/' + robot.model.frames[-2].name,
         list(pio.se3ToXYZQUAT(robot.viz.data.oMf[-2]).flat))
     robot.viewer.gui.applyConfiguration(
         'world/' + robot.model.frames[-1].name,
         list(pio.se3ToXYZQUAT(robot.viz.data.oMf[-1]).flat))
     robot.viewer.gui.refresh()
 def calc(self, q):
     ### Add the code to recompute your cost here
     pin.forwardKinematics(self.rmodel, self.rdata, q)
     pin.updateFramePlacements(self.rmodel, self.rdata)
     pose = self.rdata.oMf[self.ee_frame_id]
     self.pos, self.ori = pose.translation, pose.rotation
     self.rpy = mat2euler(self.ori)
     self.r_pos = self.sel_vector[:3] * (self.pos - self.desired_pose[:3])
     self.r_ori = self.sel_vector[3:] * (self.rpy - self.desired_pose[3:])
     return 0.5 * np.sum(self.r_pos**2 + self.r_ori**2)
def invgeom(h = 0.2, lx = 0.1946, ly=0.16891, leg_dir = [+1,+1,-1,-1]):
    #Inputs to be modified by the user
    feet_position_ref =     [np.array([lx,   ly, 0.0191028]),np.array([lx,  -ly, 0.0191028]),np.array([-lx,   ly, 0.0191028]),np.array([-lx,  -ly, 0.0191028])]
    base_orientation_ref = pin.utils.rpyToMatrix(0,0,0) 
    com_ref = np.array([0,0,h])
    FL_FOOT_ID = robot.model.getFrameId('FL_FOOT')
    FR_FOOT_ID = robot.model.getFrameId('FR_FOOT')
    HL_FOOT_ID = robot.model.getFrameId('HL_FOOT')
    HR_FOOT_ID = robot.model.getFrameId('HR_FOOT')
    BASE_ID =  robot.model.getFrameId('base_link')
    foot_ids = np.array([FL_FOOT_ID, FR_FOOT_ID, HL_FOOT_ID, HR_FOOT_ID])
    q = np.array([ 0., 0.,0.235,  0.   ,  0.   ,  0.   ,  1.   ,  
                0.1  , +0.8 * leg_dir[0] , -1.6 * leg_dir[0] , 
               -0.1  , +0.8 * leg_dir[1],  -1.6 * leg_dir[1] ,  
                0.1  , -0.8 * leg_dir[2] , +1.6 * leg_dir[2] ,
               -0.1  , -0.8 * leg_dir[3] , +1.6 * leg_dir[3]])
    dq = robot.v0.copy()
    for i in range(100):
        #Compute fwd kin
        pin.forwardKinematics(rmodel,rdata,q,np.zeros(rmodel.nv),np.zeros(rmodel.nv))
        pin.updateFramePlacements(rmodel,rdata)

        ### FEET
        Jfeet = []
        pfeet_err = []
        for i_ee in range(4):
            idx = int(foot_ids[i_ee])
            pos = rdata.oMf[idx].translation
            ref = feet_position_ref[i_ee]
            Jfeet.append(pin.computeFrameJacobian(robot.model,robot.data,q,idx,pin.LOCAL_WORLD_ALIGNED)[:3])
            pfeet_err.append(ref-pos)

        ### CoM
        com = robot.com(q)
        Jcom = robot.Jcom(q)
        e_com = com_ref-com

        ### BASE ROTATION
        idx = BASE_ID
        rot = rdata.oMf[idx].rotation
        rotref = base_orientation_ref
        Jwbasis = pin.computeFrameJacobian(robot.model,robot.data,q,idx,pin.LOCAL_WORLD_ALIGNED)[3:]
        e_basisrot = -rotref @ pin.log3(rotref.T@rot)

        #All tasks
        J = np.vstack(Jfeet+[Jcom,Jwbasis])
        x_err = np.concatenate(pfeet_err+[e_com,e_basisrot])
        residual = np.linalg.norm(x_err)
        if residual<1e-5:
            print (np.linalg.norm(x_err))
            print ("iteration: {} residual: {}".format(i,residual))
            return q
        dq=np.linalg.pinv(J)@(x_err)
        q=pin.integrate(robot.model,q,dq)
    return q * np.nan
Exemple #23
0
    def createCoMProblem(self, x0, comGoTo, timeStep, numKnots):
        """ Create a shooting problem for a CoM forward/backward task.

        :param x0: initial state
        :param comGoTo: initial CoM motion
        :param timeStep: step time for each knot
        :param numKnots: number of knots per each phase
        :return shooting problem
        """
        # Compute the current foot positions
        q0 = x0[:self.rmodel.nq]
        pinocchio.forwardKinematics(self.rmodel, self.rdata, q0)
        pinocchio.updateFramePlacements(self.rmodel, self.rdata)
        com0 = pinocchio.centerOfMass(self.rmodel, self.rdata, q0)
        # lfFootPos0 = self.rdata.oMf[self.lfFootId].translation
        # rfFootPos0 = self.rdata.oMf[self.rfFootId].translation
        # lhFootPos0 = self.rdata.oMf[self.lhFootId].translation
        # rhFootPos0 = self.rdata.oMf[self.rhFootId].translation

        # Defining the action models along the time instances
        comModels = []

        # Creating the action model for the CoM task
        comForwardModels = [
            self.createSwingFootModel(
                timeStep,
                [self.lfFootId, self.rfFootId, self.lhFootId, self.rhFootId],
            ) for k in range(numKnots)
        ]
        comForwardTermModel = self.createSwingFootModel(
            timeStep,
            [self.lfFootId, self.rfFootId, self.lhFootId, self.rhFootId],
            com0 + np.matrix([comGoTo, 0., 0.]).T)
        comForwardTermModel.differential.costs.costs['comTrack'].weight = 1e6

        comBackwardModels = [
            self.createSwingFootModel(
                timeStep,
                [self.lfFootId, self.rfFootId, self.lhFootId, self.rhFootId],
            ) for k in range(numKnots)
        ]
        comBackwardTermModel = self.createSwingFootModel(
            timeStep,
            [self.lfFootId, self.rfFootId, self.lhFootId, self.rhFootId],
            com0 + np.matrix([-comGoTo, 0., 0.]).T)
        comBackwardTermModel.differential.costs.costs['comTrack'].weight = 1e6

        # Adding the CoM tasks
        comModels += comForwardModels + [comForwardTermModel]
        comModels += comBackwardModels + [comBackwardTermModel]

        # Defining the shooting problem
        problem = crocoddyl.ShootingProblem(x0, comModels, comModels[-1])
        return problem
 def cost(self, x):
     tauq, fr, fl = self.x2vars(x)
     pinocchio.computeAllTerms(self.rmodel, self.rdata, self.q, self.vq)
     b = self.rdata.nle
     pinocchio.updateFramePlacements(self.rmodel, self.rdata)
     Jr = pinocchio.getFrameJacobian(self.rmodel, self.rdata, self.idR,
                                     LOCAL)
     Jl = pinocchio.getFrameJacobian(self.rmodel, self.rdata, self.idL,
                                     LOCAL)
     self.residuals = m2a(b - tauq - Jr.T * fr - Jl.T * fl)
     return sum(self.residuals**2)
 def dConstraint_dx(self, x):
     q = a2m(x)
     pinocchio.forwardKinematics(self.rmodel, self.rdata, q)
     pinocchio.computeJointJacobians(self.rmodel, self.rdata, q)
     pinocchio.updateFramePlacements(self.rmodel, self.rdata)
     refMeff = self.refEff.inverse() * self.rdata.oMf[self.idEff]
     log_M = pinocchio.Jlog6(refMeff)
     M_q = pinocchio.getFrameJacobian(self.rmodel, self.rdata, self.idEff,
                                      LOCAL)
     self.Jeq = log_M * M_q
     return self.Jeq
Exemple #26
0
    def createPacingProblem(self, x0, stepLength, stepHeight, timeStep,
                            stepKnots, supportKnots):
        """ Create a shooting problem for a simple pacing gait.

        :param x0: initial state
        :param stepLength: step length
        :param stepHeight: step height
        :param timeStep: step time for each knot
        :param stepKnots: number of knots for step phases
        :param supportKnots: number of knots for double support phases
        :return shooting problem
        """
        # Compute the current foot positions
        q0 = x0[:self.rmodel.nq]
        pinocchio.forwardKinematics(self.rmodel, self.rdata, q0)
        pinocchio.updateFramePlacements(self.rmodel, self.rdata)
        rfFootPos0 = self.rdata.oMf[self.rfFootId].translation
        rhFootPos0 = self.rdata.oMf[self.rhFootId].translation
        lfFootPos0 = self.rdata.oMf[self.lfFootId].translation
        lhFootPos0 = self.rdata.oMf[self.lhFootId].translation
        comRef = (rfFootPos0 + rhFootPos0 + lfFootPos0 + lhFootPos0) / 4
        comRef[2] = pinocchio.centerOfMass(self.rmodel, self.rdata,
                                           q0)[2].item()

        # Defining the action models along the time instances
        loco3dModel = []
        doubleSupport = [
            self.createSwingFootModel(
                timeStep,
                [self.lfFootId, self.rfFootId, self.lhFootId, self.rhFootId],
            ) for k in range(supportKnots)
        ]
        if self.firstStep is True:
            rightSteps = self.createFootstepModels(
                comRef, [rfFootPos0, rhFootPos0], 0.5 * stepLength, stepHeight,
                timeStep, stepKnots, [self.lfFootId, self.lhFootId],
                [self.rfFootId, self.rhFootId])
            self.firstStep = False
        else:
            rightSteps = self.createFootstepModels(
                comRef, [rfFootPos0, rhFootPos0], stepLength, stepHeight,
                timeStep, stepKnots, [self.lfFootId, self.lhFootId],
                [self.rfFootId, self.rhFootId])
        leftSteps = self.createFootstepModels(comRef, [lfFootPos0, lhFootPos0],
                                              stepLength, stepHeight, timeStep,
                                              stepKnots,
                                              [self.rfFootId, self.rhFootId],
                                              [self.lfFootId, self.lhFootId])

        loco3dModel += doubleSupport + rightSteps
        loco3dModel += doubleSupport + leftSteps

        problem = crocoddyl.ShootingProblem(x0, loco3dModel, loco3dModel[-1])
        return problem
    def cost(self, x):
        q = a2m(x)
        pinocchio.forwardKinematics(self.rmodel, self.rdata, q)
        pinocchio.updateFramePlacements(self.rmodel, self.rdata)

        refMl = self.refL.inverse() * self.rdata.oMf[self.idL]
        residualL = m2a(pinocchio.log(refMl).vector)
        refMr = self.refR.inverse() * self.rdata.oMf[self.idR]
        residualR = m2a(pinocchio.log(refMr).vector)

        self.residuals = np.concatenate([residualL, residualR])
        return sum(self.residuals**2)
Exemple #28
0
def main():
    '''
        Main procedure
        1 ) Build the model from an URDF file
        2 ) compute forwardKinematics
        3 ) compute forwardKinematics of the frames
        4 ) explore data
    '''
    model_file = Path(__file__).absolute().parents[1].joinpath(
        'urdf', 'twolinks.urdf')
    model = buildModelFromUrdf(str(model_file))
    # Create data required by the algorithms
    data = model.createData()
    # Sample a random configuration
    numpy_vector_joint_pos = randomConfiguration(model)
    numpy_vector_joint_vel = np.random.rand(model.njoints - 1)
    numpy_vector_joint_acc = np.random.rand(model.njoints - 1)
    # Calls Reverese Newton-Euler algorithm
    numpy_vector_joint_torques = rnea(model, data, numpy_vector_joint_pos,
                                      numpy_vector_joint_vel,
                                      numpy_vector_joint_acc)
    #  IN WHAT FOLLOWS WE CONFIRM THAT rnea COMPUTES THE FORWARD KINEMATCS
    computeJointJacobians(model, data, numpy_vector_joint_pos)
    joint_number = model.njoints
    for i in range(joint_number):
        joint = model.joints[i]
        joint_placement = data.oMi[i]
        joint_velocity = getVelocity(model, data, i,
                                     ReferenceFrame.LOCAL_WORLD_ALIGNED)

        joint_jacobian = getJointJacobian(model, data, i,
                                          ReferenceFrame.LOCAL_WORLD_ALIGNED)

        err = joint_velocity.vector - \
            joint_jacobian.dot(numpy_vector_joint_vel)
        assert np.linalg.norm(err, ord=np.inf) < 1.0e-10, err

    # CAUTION updateFramePlacements must be called to update frame's positions
    # Remark: in pinocchio frames, joints and bodies are different things
    updateFramePlacements(model, data)
    frame_number = model.nframes
    for i in range(frame_number):
        frame = model.frames[i]
        frame_placement = data.oMf[i]
        frame_velocity = getFrameVelocity(model, data, i,
                                          ReferenceFrame.LOCAL_WORLD_ALIGNED)

        frame_jacobian = getFrameJacobian(model, data, i,
                                          ReferenceFrame.LOCAL_WORLD_ALIGNED)

        err = frame_velocity.vector - \
            frame_jacobian.dot(numpy_vector_joint_vel)
        assert np.linalg.norm(err, ord=np.inf) < 1.0e-10, err
Exemple #29
0
 def calc(self, data, x, u=None):
     if u is None:
         u = self.unone
     nq, nv = self.nq, self.nv
     q = a2m(x[:nq])
     v = a2m(x[-nv:])
     tauq = a2m(self.actuation.calc(data.actuation, x, u))
     data.xout[:] = pinocchio.aba(self.pinocchio, data.pinocchio, q, v, tauq).flat
     pinocchio.forwardKinematics(self.pinocchio, data.pinocchio, q, v)
     pinocchio.updateFramePlacements(self.pinocchio, data.pinocchio)
     data.cost = self.costs.calc(data.costs, x, u)
     return data.xout, data.cost
Exemple #30
0
    def setUp(self):
        self.x = self.ROBOT_STATE.rand()
        self.robot_data = self.ROBOT_MODEL.createData()
        self.data = self.IMPULSE.createData(self.robot_data)
        self.data_der = self.IMPULSE_DER.createData(self.robot_data)

        nq, nv = self.ROBOT_MODEL.nq, self.ROBOT_MODEL.nv
        pinocchio.forwardKinematics(self.ROBOT_MODEL, self.robot_data, self.x[:nq], self.x[nq:],
                                    pinocchio.utils.zero(nv))
        pinocchio.computeJointJacobians(self.ROBOT_MODEL, self.robot_data)
        pinocchio.updateFramePlacements(self.ROBOT_MODEL, self.robot_data)
        pinocchio.computeForwardKinematicsDerivatives(self.ROBOT_MODEL, self.robot_data, self.x[:nq], self.x[nq:],
                                                      pinocchio.utils.zero(nv))